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A set of quasi-probability distribution functions which give the correct quantum mechanical
marginal distributions of position and momentum is studied. The phase-space distribution does not
have to be bilinear in the state function. The Wigner distribution is a special case. A general relation-
ship between the phase-space distribution functions and the rule of associating classical quantities
to quantum mechanical operators is derived. This allows the writing of correspondence rules at will,
of which the ones presently known are particular cases. The dynamics and other properties of the

generalized phase-space distribution are considered.

1. INTRODUCTION

N recent years the so-called phase-space formula-
tion of quantum mechanics has found many
applications, particularly in statistical mechanics’
and in the study of the coherent properties of light.”
Its basic feature is to permit one to calculate expecta-
tion values of quantum mechanical observables in
the classical manner rather than through the opera-
tor formalism of quantum mechanics. That is, if
©) = [ v@G@ e ds @
is the expected value of the operator G than one
attempts to write this as

© = [[ oa, DF@ p dgdp, @2

where g(q, p) is the classical function from which

* Research sponsored in part by the U. 8. Air Force Office
of Scientific Research.

1 For a general review of the Wigner distribution function
the article “The Wigner Function and Transport Theory” by
H. More, R. Oppenheim, and J. Ross which appears in
Studies in Statistical Mechanies, V. De Boer and G. E. Uhlen-
beck, Eds. (North-Holland Publishing Company, Amsterdam,
1962), Vol. 1, may be consulted. The article contains many
references.

? L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).

the quantum mechanical G is obtained and F (g, p)
is the “distribution” function.®

The literature has dealt almost exclusively with
the Wigner* distribution function. It is given by

1
FSV(Q: ps f‘) = —2;[ \&*(q - %Th, t)
X 6_‘rp1,b(q + 37h, t) dr.

An integration over ¢ or p yields the correct quantum
mechanical marginal distributions. Unfortunately
the Wigner distribution has some shortcomings. It
can take on negative values and thus cannot be
considered a true distribution. For this reason some
authors have called it a quasi-probability distribu-
tion. More seriously, the Wigner distribution does
not always yield the same expectation values as
the correct quantum mechanical methods. For ex-
ample, if one calculates the standard deviation of
energy of the first excited state of the simple har-
monic oscillator, using the classical Hamiltonian, a
nonzero value is obtained. This is clearly in con-
tradiction with the notion of an energy eigenstate.

. ? We restriet ourselves to a single dimension. Generaliza-
tion to higher dimensions is direct. All integrals go from

(1.3)

to m.
* E. Wigner, Phys. Rev. 40, 749 (1932).
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Another distribution given by Margenau and Hill®
in their work on joint probability distributions and
later studied in detail by Mehta® is

F(g,p, ) = 3 Real ¥(g, 0

X [ myrg — ydr. (14)
This distribution does give zero for the dispersion of
energy for the ground and first excited states of
the harmonic oscillator (although it gives nonzero
values for the other eigenstates).

In the following we shall present a wide class of
distribution functions of which the above two are
special cases. The set of functions we propose to

consider is
1 —ifg—irp+ifu
o fff“” R (R )

F(g,p, ;) =
X Y*u — 37k, )y(u + 37h, t) d6 dr du, (1.5)
where f(8, =, {) is any function’ which satisfies
f(0, 7, &) = (6,0, 8) = 1. (1.6)

It is readily seen that if f = 1, cos 367h, we obtain
(1.3) or (1.4) respectively. An integration of (1.5)
over p or ¢ yields the correct marginal distributions:

[ Fap ndp = 1w, 08, @)

[ Fa,p 6 da= e, 08,  (8)

where ¢(p, t) is the momentum state function. It
should be noticed that f can be a functional of the
state function itself. For example

16, 7,0 = [ Wa — or, Ow*(g + br, 1) dg
satisfies (1.6). Thus F need not be bilinear in ¢.

2. CHARACTERISTIC FUNCTION AND
CORRESPONDENCE RULES

The characteristic function M (8, =, ¢) is defined as
the Fourier transform of the distribution function.

M(e, T, t) — ff F(q', P, t)eitq+-‘~rr dq dp

- (ei0¢+|'rg)
?
which is the expected value of €”***™. For a well-

¢ II. Margenau and R. N. Hill, Progr. Theoret. Phys.
(Kyoto) 26, 722 (1961).

«C. L. Mehta J. Math. Phys 5, 677 (1964).

Tfis a.ssumed to be sufficiently well behaved so that the
integrations in (1.5) can be inter ged. If f has the further
property that f*(0, r) = f(—6,—7) than F will be real and the
operator G of Sec. 2 will be Hermitian.

2.1)
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behaved distribution function, M(8, , t) contains
as much information as the distribution function
itself since (2.1) can be inverted to yield

F(g,p, ) = i fM(ﬂ, r, De """ dg dr

. 4%2_ ff (en‘ﬂq+|'rp>e—ﬂu—irp de dT-

By expanding e’***"” of (2.1), M (6, r, {) can be
expressed in terms of the moments,

M, 7, 1) = 3 3o GO (o,

n! m!

2.2)

(2.3)

m=0 n=0

Thus the problem of finding a quantum mechanical

F reduces to finding the quantum mechanical equiv-
alent of the classical quantity e*’***" or ¢"p". Rules
which associate classical quantities to quantum me-
chanical operators are called correspondence rules
or rules of association. There have been five such
rules proposed. We list them here for completeness.

(a) Dirac’s Rule of associating commutators with
Poisson brackets.

(b) Von Neumann’s Rules.

(e) Weyl’s Rule.

eiﬂe+s‘fp = e.‘equcp (24)
or equivalently as shown by McCoy"
1 < AT
"5 2 ( ,)q 'pq’. (2.5)
(d) Symmetrization Rule
et!¢+ itp g 1 {edq irp + 8“’8‘“} (26)
or
g™ — 3{qp" + p"C}. 2.7
(e) Rule of Born and Jordan®
m—t n I 2.
= + i ; P (2.8)

The first four rules were considered by Schewell'®
and others. They have shown that (a) and (b) are
self-contradictory. The Rule of Born and Jordan
seems to have been forgotten. Moyal' has derived
the Wigner distribution using the Weyl rule of
association and Margenau and Hill have used the
Symmetrization Rule to obtain (1.4). A straight-
forward calculation yields

_§Ffff£%T—‘hsméarh

X p*u — drh, OWu + 3ok, ) dO dr du,  (2.9)

8 N. H. McCoy, Proc. U. 8. Natl. Acad. Sci. 18, 674 (1932).
o M. Born and P. Jordan, Z. Phys. 34, 873 (1925).

10 J. R. Shewell, Am. J. Phys, 27. 16 (1059),

1 J. E. Moyal, Proc. Cam| ndge Ph;l Soc 45, 99 (1949).
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when the rule of Born and Jordan is used. This is a
speeial case of (1.5) with f = sin (}87%)/307h. We
shall now derive a fundamental relation which exists
between correspondence rules and the general phase-
space distribution (1.5). This will allow us to write,
at will, correspondence rules of which the above are
special cases.

Let g(g, p) be a classical function and G(q, p) the
quantum mechanical operator corresponding to it.
When (1.5) is used, the expected value of g is

@a,») = [[ Fap, Dota, p) dq dp (2.10)
= [[[ v, ie, Deyra — 4o
X yY(u + irh) dé dr du, (2.11)
where we have set
l —ifg—irp
Vo, 1) = 13 ff olg, P dgdp.  (2.12)
Now consider the expression
[ v ug) g, (2.13)
which equals
& [ v e wa + M dg,  (219)
since
eiﬂq*irn Ea e}iﬂrﬁeﬂqel'rp (2-15)
and
e¥(q) = ¥(g + 7h).

Making the substitution © = ¢ + 3rh, we see that

the expression (2.13) equals

[ v = 4w + 3hy au. @.16)
Therefore (2.11) can be written in the form
o, ) = [[[ +0, 9166, )
X y*(@e'" " "Y(q) do dr dg.  (2.17)
We would like this to equal
[ (@6, p¥@ dg = (6@, p).  @18)

Comparison then shows that the operator G can
be taken as

6@ v = [[ 10, Do, e avar  (219)
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ff Hirh (8, 1)f(6, )%™ do dr. (2.20)
This establishes the method of obtaining the quan-
tum mechanical G from the classical g if (2.18) and
(2.10) are to yield the same value.

Equation (2.20) can be cast in a more operational
form. Assume f to be analytic and expand it in a
power series

16, 7) = X a.07". (2.21)

Equation (2.20) then becomes

E%(%f?h)" f f 0 7"y (0, 7% ™ do dr. (2.22)

But from 2.12
(62n+r+l/aqn+rapu+l)g(q’

x ff +rT-+.']’(B, T)eihi-n't» d8 df

2n+r+l

(2.23)
or, upon inverting,

r n+s 1 1
9'”- T P 7(81 T) = i2n+r+n m

x [[ {5 ota, pj = dgap. (229

Substituting (2.24) in (2.22) we find
_ i a,.(31h)"
G(ql p) 4‘"’ o n’ 12n+r¢-l

x [[[f {5 maess ot 20}

5t 4 —ibg* —irp® .aq irp de dr dq’dp (225)

This expression for G is in normal form, that is, the
q factors precede the p factors. We can therefore
substitute ordinary variables g and p for the opera-
tors q and p, perform the integration and resub-
stitute q and p for ¢ and p, after the resulting
integration has been put in a form so that the ¢
factors precede the p factors. Carrying this out gives

IG ;,% , } %)e"‘*"’"""”’g(q, p)-
Thus, to obtain a correspondence rule, chose any
f which satisfies (1.6), and calculate (2.26). Then
arrange the result so that the ¢ factors precede the
p factors and substitute q for ¢ and p for p. The
correspondence rules of Weyl, the rule of symmetri-
zation, and the rule of Born and Jordan are obtained
by taking f equal to 1, cos }6rh, sin (367h)/L07h,
respectively.

(2.26)
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3. PHASE-SPACE EIGENFUNCTIONS

If ¢(q) is expanded in a complete orthonormal set
fe.(@)]

WD) = 3 o), @.1)

n=0

then the phase-space distribution function (1.5)
takes the form

Flg,p, ;) = § at(Dan(Dhanle, p; ), (3.2

where h,, are the phase-space eigenfunctions and
are given by

bt ) = b [[] e

X (8, Detlu — rh)en(u + 37h) dOdudr. (3.3)

In general the phase-space eigenfunctions will
not form a complete orthogonal set. But if [f| = 1,
the h,,’s do form such a set in the space of ¢ and
p. It is straightforward to show that

[[ hanta, PRE w0, 7) da dp

= (1/20h) buniBum:,  (3.4)
2 han(g, DR2(0", P')
= (1/2«h) &g — ¢)ép — p),  (3.5)
f f han(g, D) dp dg = 8.m, (3.6)
? han(q, D) = 1/27h. (3.7

4. MIXTURES

Up to now we have considered pure states given
by the wavefunction . In the case of a mixture the
distribution function becomes

Fg,p, ;1) = L PFY(g,p, ), (4D
-0
where P, is the probability of having ¢*', and F™* is
obtained from (1.5) with ¢* instead of y. If each
¢™ is expanded in a complete orthonormal set ¢,
then (4.1) becomes

F(g,p, ;) = 3 Pua*®al’h,.(q, p; f)

§ Prnhnn(q, 25 1),

where p,,, is the density matrix.
A necessary and sufficient condition for a given
F to describe a pure state is

(4.2)

I

(4.3)

LEON COHEN

F(g,p) = fff F(q', p)F(q", p")

Xog —qd” =49 —np"—p

dq' dq’’ dp’ dp”’, (4.4)
where
e _h_ f i8(g" ' —q)+i8' (¢ —@) +ir(p''=p)+ir'(p'=p)
o=z [ll] ¢
X e—}ﬂr'iﬁiﬂ'rif*(o’ f)f*(a', '!")
X f(6+ 6,7+ 7)dode drdr’. (4.5)

To show that (4.4) is necessary, we use the well-
known fact that

P =0 (4.6)

is a necessary and sufficient condition for the ex-
istence of a pure state. From (4.3) and (3.4) we
have

pon = 20t [[ Pla, (0, ) dadp.  (4)
Substituting (4.7) in (4.6)
[[ Fa, ptata, ) dadp = 200 T [ Fia )
X F(q’, p)ht(q, p)h¥(q’, p') dgdq’ dp dp’. (4.8)

Multiplying by h..(¢”, p’') and summing over =
and m we obtain, using (3.5),

Fla,p) = @’ T [ F@, 9OF" 9

X k(g p'Wi(a'P ) han(q, ) dq’ dg"’ dp’ dp”'.
But some algebra yields
(2wh)? ; kg, ' )hk(g' D )han(q, P)

=g(¢ —¢,¢" —¢p —p0"—p (49

and therefore the necessity is established. To show
that (4.4) is also sufficient, we write

F(g,p) = 22 pashan(d, P) (4.10)
and substitute in (4.4)
.; Pralinn(q; D)
= 3 [ peatarnbnla, 2P
Xglg—q¢ —¢p —0p" — P
do’ dg” dp’ dp”'.  (4.11)
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But
f hn(g", " Vhaen(q', p")g dq’ dg’’ dp” dp”’ = bpnharu(q, D). (4.12)
Thus
E Pm.hum(q, P) Z: PmnP- n' 6nm hn m(q, P) Z pnmpml n' n(q, p)
or
Pun = Z‘ Pmn'Pa'n = Pin:
which is a sufficient condition for a pure state.
5. DYNAMICS
A direct but somewhat lengthy calculation gives
E&ﬁﬁﬂ_gi;i-jg(;j__;i)(__ 8 ;9 )
at 5 Vot \ e ! aqp+"aq,, ap.-+ aqu
(i, i2)
. h [ a9 9 ] agr ' Ipe
——-—-—-—-————--—-H F(q, », t; F(q, p, t 5.1
X sin red- it T (¢, DF(q,p, t; ) + T (2,9, 0 (6.1)

for the equation of motion of the generalized phase-
space distribution. H(g, p) is the classical Hamilton-
ian. d/dqy, 0/0py operates on H only and d/dqp,
d/dpr on F. (5.1) reduces to the classical equation
of motion if f is taken to be a function of A such that

imf=1
#—0

and
lim f = 0.
*—0

We shall now derive the temporal transformation
functions for the characteristic and distribution
function in terms of the quantum mechanical Green's
function. Let

Mo, 7,0 = [[ L0, ¢ 0,7, 1)

X M@, ', ) de’ d',  (5.2)

F(g,p, 1) =f K(g,p, t| 9, 1)
X F(g,p', V) dg’ dpf,  (5.3)
e, = [ 6t 0, 0T, D dg. (G.9)

From (1.5) and (2.1) we obtain for the characteristic
function

M, 7,0 = 10, 7) [ wotu — doh, e

X Wu + b, ) du.  (5.5)

i =5 3m0)

Inserting (5.4) into (5.5)
M(ﬂ, T t)

= 10,7, 0 [[[ e —3en 11 @, 1)

X Gu + 37h, t | q, )¥*(q’, V)¥(q, t) du dg dq’.
(5.6)
Making the substitution
g = + b,
g =u — 37'h,
and inserting
1= -—ff Rt g9 dut.
we find that
_h Pu—ifu
M@, v, 1) = 2100, 7, 0 [[[[
X Gu + 3rh, t |u' + 374, V)
X G*u — 37h, t |w — 37'h, V)
X [Me’, =, /18, 7, )] 46’ dr’ dudu'. (5.7)

Comparing with (5.2) we have

A !B -rzt ff iBu—i0u’

or e, +,
X Gu + 37k, t | + 3R, V')
X G*u — 37k, t | — 'K, V) du du’.

I{e, r,t| &', V) =

(5.8)
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A similar procedure applied to (5.3) gives

K(g,p, t|q,p', 1) =4—71r2fff e 2] 0 ¢ )

X ¢TI g9 dr do’ dr'. (5.9)

6. CONCLUSION

In conclusion we would like to mention some gen-
eral features of the phase-space formulation. As
mentioned in the introduction, the Wigner distribu-
toin has been widely applied. It may be of some
interest to repeat some of these calculations using
(1.5) to determine how sensitive the results are to
the choice of f.

It is commonly held that the uncertainty principle
by itself precludes the possibility of the existence
of a joint distribution of position and momentum.
However, this is not so. For example, the choice

ff V(@I l6@)[ € dg dp

LEON COHEN

leads to

F(g,p, 1) = [¥(@|" 6@ [, (6.2)

which is certainly a well-defined joint distribution,
and from which the uncertainty principle follows
in the usual manner, The reason why a true joint
distribution cannot be defined is because no choice
of f yields a distribution which gives the correct
quantum mechanical expectation values for all ob-
servables when caleulated through phase-space in-
tegration. That is, no f exists such that, if the cor-
respondence of quantum to classical variables de-
rived in Sec. 2 is

9(g,p) = G (6.3)
for some f, then also
H(g(q, p)) — H(G) (6.4)

for the same f, where H is any function.
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The Invariance of the Vacuum is the Invariance of the World

Sioney CoLEMAN®

CERN, Geneva, Switzerland
(Received 30 August 1965)

The following theorem is demonstrated: If the vacuum is invariant under the group generated by
the space integral of the time component of a local vector current, then the Hamiltonian is invariant
also. A similar theorem holds for the group generated by the space integral of a space component of

a local axial-vector current.

N quantum field theory, we often encounter

groups of transformations generated by the space
integral of the fourth component of a local vector
current. We know such groups generate invariances
of the system if they leave the Hamiltonian in-
variant, for from this we can deduce that the
vacuum is an invariant state, and that the trans-
formations of field operators induced by the group
are invariances of the Wightman functions. It is
the purpose of this note to point out that all this
follows from an apparently much more restricted
assumption: we prove that, if the vacuum is invariant
under such a group, then so is the Hamiltonian.'

Proof: If the vacuum is invariant under the group’
then the generator of the group must annihilate
the vacuum. That is to say,’

f Vo(x, ) d’x |0) = 0. (1)

Let |n) be an arbitrary state with vanishing 3-
momentum. Then,

@l [ Vulx, 0 d’x j0) = 0. @)

But because of the way we have chosen the mo-
mentum, this is equivalent to

* Alfred Sloan Research Fellow. Permanent Address:
Lyman Laboratory, Ilarvard University, Cambridge, Mas-
sachusetts.

1 We assume the usual axioms of field theory. See, for
example, R. Streater and A. Wightman, PCT, Spin and
Stalistics, and All That, (W. A. Benjamin, Inc.,, New York,
1964). In addition, we assume that there are no zero-mass
particles.

2 It is easy to show that this integral exists, at least with
a dense set of states (quasi-local states) on the left. Un-
Iortunatelir, our subsequent manipulations involve, not
quasi-local states, but momentum eigenstates; therefore the
argument presented here is not a rigorous proof. I am indebted
to K. Hepp for a discussion of this point. Note added in proof:
A rigorous proof has been constructed by G.-F. Dell’Antonio
(unpublished).

(n| V() |0) = 0, (3)
which is the same as
(n| 8"V (z) |0) = 0. (4)

But Lorentz invariance tells us that, if this is true
in any one Lorentz frame, it is true in all Lorentz
frames. Since any momentum eigenstate may be
obtained by applying a Lorentz transformation to
a state of zero 3-momentum, q. (4) is valid with
any momentum eigenstate on the left. Since these
are a complete set,

3"V,(z) |0) = 0. (5)

But it is known® that any local operator which
annihilates the vacuum is in fact zero. Thus,

v, = 0. (6)
This implies that

f Vo, 0) &'

is independent of time, i.c., commutes with the
Hamiltonian.

Recently, there has been some interest* in groups
of transformations generated by the space integrals
of the space components of axial vector currents.
The same method can be used to show that, if the
vacuum is invariant under such a group, then the
Hamiltonian is also. Equation (6) is replaced by

9,4, — 3,A, = 0. (M
Otherwise the proof is substantially the same.

3 Reference 1, Theorem 4-3. .

4 R. Feynman, M. Gell-Mann, and G. Zweig, Phys. Rev.
Letters 13, 678 (1964); B. W. Lee, ibid. 14, 676 (1965);
R. Dashen and M. Gefl-Mann, Phys. Letters 17, 142, 145
(1965).
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Thessaloniki University, Thessaloniki, Greece
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In a general case of Hamiltonian systems of n degrees of freedom, depending periodically on
time, n formal “third”’ integrals of motion are found. Their application in finding boundaries for the
orbits is illustrated in a special case. Then a comparison is made between these integrals and the
adiabatic invariants. Both are series expansions but the small parameter used is of different character
in each case. This is shown explicitly in a simple example and the relative accuracy of the two

MAY 1966

expansions is discussed.

I. INTRODUCTION

t is well known that, under certain conditions,

adiabatic invariants are constant to all orders

in the small parameter,' i.e., they are formal inte-
grals of motion.

On the other hand, in most time-independent
Hamiltonian systems of n degrees of freedom, one can
find n formal integrals of motion,’ as power series
in the coordinates and momenta. We call any such
integral a “third" integral, to distinguish it from the
classical energy and angular momentum integrals.

The same method can be applied to a general
case of n degrees of freedom, when the potential is
expressed as a series in the coordinates, and is
periodic in time. Then n formal integrals are found,
which are periodic in time.

There are a few similarities between these inte-
grals and the adiabatic invariants, but there are
some important differences also. These are illus-
trated in the last section, where both a “third”
integral and an adiabatic invariant are constructed
for the same dynamical system.

II. INTEGRALS OF MOTION IN PERIODIC
POTENTIALS

Suppose that a potential is given as a series in
the coordinates, beginning with terms of second
degree, and periodic with respect to the time, with
period 2r/w, then the Hamiltonian

H=H’+Iia+"', (l)

is also periodic in ¢, and it has the origin as equi-
librium point. We will consider the case when the
characteristic exponents of the equilibrium solu-

! See M. Kruskal, J. Math. Phys. 3, 806 (1962) and refer-
ences there,

* (. Contopoulos, Z. Astrophys. 49, 273 (1960); Astron,
J. 68,1 (1963

tion are pure imaginary and not equal. This is a
most common case in applications. Then we can
use a linear transformation of the variables, with
coefficients periodic in ¢, and find a new Hamil-
tonian of the same form, where

H, = 2%—‘

=]

(@ + ¥ @)

in the new variables.” If we introduce further new
coordinates and momenta,

I = IE/(&).)', (3)
Ye = (Wdyi)i-
we find
H =5 3 @l + ), @

i.e., the second-order Hamiltonian is independent
of time and represents a system of n harmonic
oscillators. Then H;, 11, are homogeneous
polynomials in z;, y,, of degree 3, 4, --- , periodic
in ¢, with period 27/w; hence the coeflicients of the
different terms can be given in the form

3 et matllzt Y

with integer m, a,, b, and ¢ constant.
Let us assume further that no relation of the
form

(5)

exists with integer m,, m,, and m equal to any of
the above given values. If m takes also the value
0, we assume that (5) is not satisfied, unless m, =
My = -+ = 0.

7n|,wl+m#8+"'+m=0

3 A, Liapounoff, Ann. Fac. Sei. Toulouse, 2nd Ser. 9, 2581,
398 (1907).
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Then we can construct, step by step, n integrals
in the form of series

¢i=¢’in+q’da+¢'u+"', (6)
where
@i = §wizi + ), @)

and ®;, is a homogeneous polynomial of degree »
in z,, y,, periodic in ¢, with period 27/w.
In fact, any integral (6) satisfies the equation

ad;
S T (@ H)
_ 9% | 3~ (3% 9H _ 9%, a_H) -
= ai + E (62:.- ay‘ ay. 6‘2:.- - 0, (8)
which can be split into the equations
3%a/3t + (0, Hy) = 0, ©)

aq)i, r+1

at + (q’i.vi-l) H!) + (QC.IJ IIB)

(10)

Equation (10) is a linear partial differential
equation that gives ®,,,, when previous terms
of the series @®; are known. The corresponding
system to this equation is

+ (‘I’i.r—l, f[,) 4 o0 = 0.

_dzy _ _dys _ d®i,.
& - Yi T —wiz N K;, ' an
where the function
K.‘.v = ""(‘Pd.n Ha) . (q’i,-—u Hl) it (12)
is known, and is of degree » + 1.
This gives
x; = [(2‘1’.'2)*/0’-‘] sin w,(t — £J), (13)
Y = (2@.5)‘ cos w.(t == t‘)
Then
B4 = fK.-,,dt, (14)

where K, , is written in the form

T g @) s T Tt — )

+ ma(t — &) + -0 + met],  (15)

where m,, m,, n,, n, are integers, n, > 0, ny > 0,
| + Imo| + --) +u 40+ - =2+ 1,
and ¢ are constants. If no coefficient, (5) is zero,
then Eq. (14) is integrated and gives &;,,., as a
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sum of the same form as (15). This can be expressed
as a polynomial of degree » + 1 in z,, y;, with
coefficients of the form ** met.

If H contains time-independent terms, the corre-
sponding m is zero. Then, if K; , contains a term
with a cosine and m;, = m, = .-+ = 0, this will
give a secular term in @, ,,,. It can be proved,
however, as in the two dimensional case,” that
K, , never includes cosines withm, = m, = -+ = 0.
Therefore n formal integrals can always be con-
structed, step by step.

If for certain values of m,, m,, -+ m, the corre-
sponding quantity (5) is zero, the above integrals
are no more valid. Then, however, the system (11)
has further the integrals

S

o = @B )HEe, i .

8in
] cos [mlml(t =] t])

+ maw(t — &) + - + ], (16)

which are polynomials in z,, y, of degree M =
lmy| + |m.| + --- . Then one can construct two
integrals of the form

S=SM+SM+1+"':
C=Cu+0u+1+"';

which will have also secular terms.

In a simple nonlinear case it has been proved*
that a combination of these integrals with the
above integrals ®; can eliminate the secular terms
and give formal time-independent integrals of
motion. These resonance integrals may be rather
different from the above integrals (6). It seems
probable that one can find such resonance inte-
grals also in the case of time-dependent potentials
of the form (1).

In many problems the Hamiltonian is given in
the form

(17

H=13 @+ +da, 08

i=]

where eis a small parameter and H, is of degree > 2.
Then we find integrals of the form

$; = ‘i’-'co) + e‘i’-‘m + fx‘f‘«m < ey (19)
where &, = ®;, and
oo = = [ G HYdl.  (@0)

The integrals @, are useful in giving bounds for

4 G. Contopoulos, Astron. J. 68, 763 (1963).
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the orbits. For example, in a two-dimensional time-
independent potential, the boundary f(x,, ;) = 0
of an orbit is found by eliminating ¥,, . between
Eq. (19) and

o8, 0%, _ 0, ot
9y, Y dYs Y,

In the case of a time-dependent potential, we
take the set of the curves f when ¢ takes all the
values within a period. If these curves are closed,
their outer boundary defines the space inside which
the orbit is confined. These curves are in zero-order
parallelograms. Therefore, if e is sufficiently small
the curves do not extend to infinity, and the orbits
are confined for all times.

This is exactly true if the integrals ®, are con-
vergent. In general, their convergence is unknown.
However, if H is given, one can find another Hamil-
tonian coinciding with I up to the termns of any

= = 0. (21)

(s + wiz3)
23w — w))
1

. 3l® — @i — 4uws)® — 16wiws)

Dy = ‘}(W:xf + yi’) + e

+ sin wifwie’ — w; + d)n (i — @irl) + 4’ + i — 4“’:)9'1372?/2]}) By

and

- 2 2 R 26
P, %(waxz + y:) m:[(wa & w:: — 40,2)2 > lﬁwalwz

+ w sin wtf(@’ + i — 4wi)z,(y3

The sum of the intergrals ®, and @, is

i {w cos wi2w3y,(ya

GEORGE CONTOPOULOS

given degree, which has convergent integrals in a
region around the origin.”

It seems probable that even when &; are not
convergent, the orbits will not go to infinity if e is
sufficiently small.

III. APPLICATION

As an example of the gencral case we consider the
potential

V = Mwiz} + wiz)) — esinwt 2,73. (22)
Then
H = H, + eH, = ¥4 + vz + wizi + wiz3)
— esinwl 2,73, (23)

where y, = duz,/dL.
One can find now two integrals of the form (6),
namely

(weoswt ¥y + wisinwt )

{w cos wt[(w’ — wy — 40)(yz — wizd) — Swfw:xlxsya]

(24)

- W:I:) = ‘l’:(‘-"a - W"; = 4”:)17|2‘2y-.-]

— wizh) + (@ — o} + ded)yzaya]} + - (25)

b =& + & = 3] + 13 + wiz] + wirs) — esinwt 2,23

-4

3 E((yi 4 wiry)(w coswt ¥, + o sinwt ) 1

2030’ — w})

2ua[(w” — @i — 4w3) — 16wiws]

X {—w cos wif(w® — w + 4w)y(ys — wiz?) — dwa(e” + Wi = 46)Z:2:Ys)

— w’sin wif(0® — wi — 4wz, (Y2 — wats) + 8‘-":9’13:2?12”) L

(26)

The last integral is similar to the Hamiltonian, but there is an extra first-order term in it.
A number of orbits have been calculated in this potential, with o} = 0.076, w; = 0.55, ¢ = 0.206.
We use these values in order to be able to compare the orbits with those calculated previously in a

model of the galactic potential near the sun,® where

H = 34 + v3 + iz} + wim) — exa; — 3e'al.

@7

Figures 1 and 2 give four orbits with the same initial velocity at the origin (y,, = 0.0512, y., = 0.1126),

5 The proof is the same as in the time-independent case, G. Contopoulos, Astrophys. J. 138, 1297 (1963).
¢ G. Contopoulos, Stockholm Obs. Ann, 20, No. 6 (1958). See also Ref. 2.
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F1a. 1. Orbit in the potential V = (w2 + wilr:?) — enyrs?
for w? = 0.076, w? = 0.55, e = 0.2006, and initial conditions
210 = 0, 110 = 0.0512, y50 = 0.1126.

one for the Hamiltonian (27) with ¢ = 0 and three
for the Hamiltonian (23) with @ = 0.1, 1 and 10.

The calculations were made for 600 time units
at least with the Runge-Kutta method in double

N

precision and a step 0.02 and/or 0.01 time units. d ’ '0’023:.0:0&’
A comparison of the results has shown that at least IRETANA ‘QP‘&\‘ A
seven decimal figures are always accurate. iy

The variations of the Hamiltonian and of the
“third” integral @ in first approximation are given
in Table I. For comparison the corresponding
quantities in the case of the Hamiltonian (27) are
given. There we know that inclusion of higher-
order terms gives a very accurate third integral.”
The initial value of 2I is always the same (0.0153). (b)
It is seen that the “third” integral is always better
conserved than the Hamiltonian.

The boundaries of the orbits in the time-de-
pendent cases are oscillating, especially in Fig. 2(b).
These boundaries can be found as follows: Eq.
(21) gives

RO
()

ny: = 0(9), (28)

A R i‘f R D .‘;\“\
O M:o,"a,;,,v
hence either y, = O(e), or . = O(e). In the first \”

lJ'\‘“f"\"’I'\' KRR
OO
IS IO
AR
s

O R iy
IR i
|
i

TasLe 1. Values of the Hamiltonian and the first-
order “third” integral.

—= RIS
s DHacs  Bgs Buin . ".*"*.’“.0‘.‘0(‘-“‘.;03!)0!‘t’ég{g\ﬁ‘"&“g‘fﬁ"' J
1 Time-
indep. 0.0153 0.0153 0.00131 0.00129 0.00139
22w = 0.1 0.0146 0.0153 0.01492 0.01478 0.01492
2bw =1 0.0132 0.0178 0.0148 0.0147 0.0161
2cw =10 0.0137 0.0163 0.015299 0.015296 0.015299 (c)
i =i ) Fia. 2. Orbits in the potential V = 1(w’r? + wolrs?) — ¢sin

y wl x z5* for the same constants and initial conditions as in
7 B. Barbanis, Z. Astrophys. 56, 56 (1962). Fig. ,and (a) @ = 0.1, (b) @ = 1, (¢) o = 10.
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case we have in first approximation

2,2 4 e{2‘1"2:@-‘51! sin wt
1

P = %"’1 :(w"‘ = m:;z)

1
230 — @) — 4w3)’ — 16wiws)

X [—8wwiw; cos wt  ,2.Ys + wilw®' — @] + 4w})

x Sin mt 2:1(2‘13250 ey 2(9:.’5;)]} = (Pl:ﬂl (29)

where ¥, = =+ (2%,,0 — «222)}, and ®,,q, $,,, are the
values of the integrals at the initial point.
In the second case

-

(b)

Fia. 3. Orbits in the same potential as in Fig. 2, for w,® =
we? = e = 0.1, @ = 1 and initial conditions z1p = T2 = 0
and (a) y1o = 0.013, 2 = 0.060465; (b) 410 = 0.035, Yo =
0.05099.

GEORGE CONTOPOULOS

ded, .
— 1,22 2:0 .
L RN (7% S U T

X [2w coswl ¥, + (0 + o} — 4w}) sin wt 7]

= ¢'2'.12!) (30)

where ¥, = ==(2®,., — wz?)’. Hence the boundaries
are near the straight lines z, = =+(2%,,))!/w, and
Yo = =(2®,.0)"/w, varying periodically in time.

The deviations are larger when we are near the
resonances @ = w;, @ = =#42w, &+ w,, or any higher-
order resonance. In the above cases w, = 0.27568,
w, = 0.74162, hence 2w, + w, =~ 1.76, 2w, — w,
~ 1.21. The last quantity is nearest to o = 1,
this is the reason why the boundaries change more
in case 2b. The “third” integral is better conserved
when w = 10, because this value is far from reso-
nances. Then the space filled by the orbit is very
nearly a parallelogram.

Similar results were found in many other cases.
Fig. 3 represents two orbits in the case ! = wj =
0.1, e = 0.1, « = 1. The orbits are rather different
from those of the corresponding time-independent
resonance case (27), except for the orbit 3b, which
is near a periodic orbit. In general, one expects
that the resonance effects of the time-independent
case, which depend on the value of w,/w,, do not
affect the time-dependent case, which depends on
some relation of w,, w; with w. In the present
case, it happens that 2w, 4+ w, = 3 X (0.3162) =
0.949 is near w = 1, but this near resonance is of
a different nature than the resonance w, = w,.
The subject is worthy of further study.

The initial conditions in the above cases are
Ty = Yz = 0, and y,0 = 0.013, y,0 = 0.060465 in
case 3a and y,, = 0.035, y,, = 0.05099 in case
3b. We find in case 3a: 2H;,;, = 0.003825, 2H ;, =
0.00336, 2H ., = 0.00417, &;,;, = 0.00319, &,;, =
0.00297, ®Ppae = 0.00319, and in case 3b: 2H,,;, =
0.003825, 2H.;., = 0.00186, 2H... = 0.00450,
Diaie = 0.00261, ;. = 0.00240, ®n.. = 0.00261.
It is seen that although we are near a resonance,
the first-order third integral is conserved much
better than the energy.

Our experience, from the time-independent cases,
indicates that the conservation of the ‘“third”
integral is always improved (to a very high ac-
curacy) as more higher-order terms are included.

IV. COMPARISON WITH THE ADIABATIC

INVARIANTS

The most simple adiabatic invariants are given
for one-dimensional Hamiltonians that vary slowly
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in time. If H depends on the time through A, where
d\/di is small with respect to A/T (T is the period
of the motion), then the action integral J =&y, dz,
is approximately constant.® Usually H is considered
to vary only during a finite time interval, being
constant before and after that. In a system of n
degrees of freedom, n adiabatic invariants can be
found when the system is separable.®

If H is not separable but is a slowly-varying
function of the time and of some variables besides
z,, ¥, then the action J =& ¥, dx, is an adiabatic
invariant under certain conditions specified below.

Gardner® gives a general method to construct
adiabatic invariants by successive approximations.
We describe his method, and the conditions under
which it is applicable.

We assume that H is a function of ¢, x,, y1, Zs, Yo+ - -,
and of a small parameter « that satisfies the follow-
ing conditions:

(1) In zero order (i.e., for w = 0) it is separable.

(2) It is a slowly varying function of the time
and of the variables z,, x;, --- (and eventually,
but not necessarily of ., ys - - ) Le., it is a function

of wx,, wrs, -+ - (and, possibly, of wy,, wys, -+ +), ie.,
H = Hy(z\, 4, T2, Ya, -~ , wl)
+ }I%(yh Wy, ", ”t)s (31)

where H, includes all terms containing z,, %, and
has no zero-order terms in y,, + -+ .

(3) The curves H = const for w« = 0 and y; =
const (2 > 1) are closed; then they are closed also
for small values of @ and fixed ¢, =, ;. (¢ > 1).

An adiabatic invariant is constructed, step by
step, by sucecessive coordinate transformations.

If we keep i, z;, and y; (# > 1) constant, the curves

H = const are transformed into circles by the
following area preserving transformation

x{ = r cos 0, y{ = rsin 6, (32)
where r o= (J/m}
and

6 = 2 f ds/|\7ﬂ|/55 ds/|VH|;

J is the area inside the curve H = const and ds
the line element along this curve. The curves H =
const are circles in the new variables.

Because of the conservation of areas, z{ dyf +

8 L. D. Landau and E. M. Lifschitz, Mechanics (Pergamon

Press, New York, 1960).
3 (3. 8. Gardner, Phys. Rev. 115, 791 (1959).
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¥, dz, is the complete differential of a generating

function F, and

:Ei = aFl/ﬁyf, th = OFl/a:E;. (33)

F, is a function of z,, y{, with coefficients functions
of wi, wzy, ¥y, -+ , which are kept constant in the
transformation (32). As we can add any arbitrary
constant in F, we may write

Fl = %yi' + o+ "’l(xl: y{) Wla, y::: S wt): (34)

where ¥, does not contain terms independent of

Ty, Y1
Then the equations

aF,/oy; = xz: + 0¥,/ 0ys,
Yi + @iy, /d(wzy),

Hl

&
[

(35)

Ya

together with Eqgs. (33) define new canonical vari-
ables !, y}, with Hamiltonian

H' = H + oF,/dt = H + wdy,/o(wl), (36)
which is of the form
H' = H\(x" + yi*, of) + HY(3, 0z}, -~ - , wl)
+ ofl\(2l, yi, w23, Y3, -+ ,el).  (37)

The term wK, contains all higher-than-zero-
order terms including z{, y{.

The next change of variables transforms the
curves H, + oH, = const into circles for ¢, z;, ¥;
(z > 1) constant. The deviation of these curves from
circles is of order w, therefore the difference between
the two sets of variables will be order w.

The new generating function can be written

Fy = ziyt" + zaya” + -+~

+ W’l/z(xir yilr wx;: y;') Ut wt): (‘;8)

where ¢, does not contain terms independent of

zf, Y1’
Then

2 = ol + 00¥/OU, Y = Ui’ + wdv/0al’, (39)
wry = wr) + ’dY,/oys’,
vi =yt + w'0ya/d(wal),

2

(40)

and the new Hamiltonian is
H" = Hy(z{"” + yi", wl) + H5l', wzl’, - - - wl)
+ o’ Ha(zl’, yl’, wxi’, yi', -+ - wl). (41)
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By repeating this procedure N times we find
H™ = H[@) + G, w]

+ Hy sy w2, -+, wl)
+ " Hy@”, i, 0z, 9", o0 0l). (42)
Then the quantity
I = @) + @) 43)

is constant to order N — 1, i.e., dJV/dt = O(w").
Therefore if N — o, J™ is a formal integral of
motion; this is the adiabatic invariant.

If, however, both z, and y, appear in H (not
through wz,, wy,) in nonlinear terms, then the
above method is not applicable.

For example, in a two-dimensional system, let
Ty, Y. appear in nonlinear zero-order terms of I1%
and let z, appear also in a mixed term (including
x, and/or y,), of degree n in w.

Then

Y2 = Y5 + 9y, /0z,,

and dy,/dx, includes terms of degree n, containing
z, and/or y{, because, by its definition, F, does
not contain terms independent of z,, ¥/ except
z,y4. Thus the expansion of H¥% gives n-order mixed
terms (containing #5).

The next change of variables gives

(z}’ = x} 4+ n)-order terms
containing z{’ and/or y] 4 -+,

and % contains again n-order mixed terms. By n
such changes of variables, we can reduce all terms
containing x;, and/or y, up to order n — 1 to a
function of (z;")* + ()" The (n + 1) trans-
formation of variables, however, cannot eliminate
the n-order terms that include z{™, y{™; because in
the new IHamiltonian the zero-order terms of H%
will give again mixed n-order terms including z{**"
and/or y{™.

In Gardner’s paper’, the Hamiltonian considered
is of the form (31), but the above conditions are not
explicitly stated.

The adiabatic invariant J* is equal to the
action J if H does not depend on the time and on
the variables x,, 3, --- . Therefore if for ¢ < ¢, and
t > t, the variables z,, y, are such that H has zero
derivatives of all orders with respect to {, g, %2, * - ,
then the action J =# y, dx, is well defined for
t < t, and ¢ > {,; its change during time {, — ¢,

CONTOPOULOS

is of order higher than any " [it is at least of order
exp (—ea/w), where « is a constant).'”*'*

In general, however, there is no time interval
during which H = const and no space where H is
independent of z,, 3, - -+ .

In the case (27), we know that we can make the
system separable by a formal variable transforma-
tion, known as the von Zeipel method. [This method
gives the third integral in a somewhat different way
than described above.]® If we set ¢ = 0 we find
explicitly a generating function
=y + wirs)

2 2
[ANAN

S=Ily:+32'ya"+%|:

(44)

4 Dl — olad) + 4w§:r.wzyz] .

wylw; — 4wy)
that gives
Y1 = Y — 2exa0/(w; — i) + - (45)

ete. Then

J=2f yldat.=2f Y di
deyixiys

X3 Iax ‘ ’z Aeyraiys o
. .»/;min (yl + wf = 40-’2 + )dt.

The quantity

(46)

2 f Yt dt

is a constant, with an error of order higher than
the first; in fact, we notice that it is exactly constant
if z;min and z,max are replaced by z{min and z/max,
and that the value of y/ for x/min, z{max is zero.
But the quantity

[ gt
zymin

is not constant, in general. Therefore J has varia-

tions of the first order in e. Thus the adiabatic

invariant J*'(N — ) is more general than the

action J =4 y, dz,.

A comparison of the adiabatic invariants in the
form J with the “third” integral shows the
following:

(a) Both are formal series expansions in terms
of a small parameter (or some small parameters).
When the “third” integral is given in power series
in the variables and no small parameter formally
appears, we may consider the energy as small

10 I, Hertweck and A. Schliiter, Z. Naturforsch. 12a,

899 (1957).
1 P. Vandervoort, Ann. Phys. 12, 436 (1961).
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parameter. In fact, an expansion (27) may be
written in dimensionless form

“’f[@%?]z N [(5%’)71'2 ¥ wi[a%%;]’
L] -]

- Mj[_xt :r =1,

3 CH}Y] — (47)

and the small parameters are essentially e(2H)
and ¢ (2H)*; if € and ¢ are constant and the small
parameter is (2H )k

The difference is that the small parameter in the
case of the “third” integral refers to a lerm, or
terms, while in the case of the adiabatic invariants
it refers to a variable, or variables.

(b) The ‘“‘third” integral is more general in the
sense that it does not require H to depend on
wxy +++ , rather than z, --- . In the case of the
Hamiltonian (27) we cannot find an adiabatic in-
variant, because both z, and y, appear in zero-
order. On the other hand, if w, is small with respect
to w;, we may construct an adiabatic invariant
expansion in powers of w,. This expansion is pre-
ferable, because the third-integral expansion is
not valid when @, — 0 or w, — 0.

(¢) The adiabatic invariants are more general
in the sense that they apply also to nonperiodic
time-dependent Hamiltonians.

- (d) The practical construction of a “third”
integral when H is a series is comparatively easy.
The formulas for finding higher-order terms are
given, and the necessary algebra can be performed
by an electronic computer. In the case of the
adiabatic invariants, the changes of variables that
transform the curves H, = const into cireles cannot,
in general, be given analytically in a simple form.
In practice, one should expand in series of another
small parameter also, which is the parameter that
measures the deviations of the equipotential lines
(in the w,z;, ¥; plane) from circles, i.e., it is es-
sentially the parameter used in the third integral.

On the other hand, if the Hamiltonian cannot be
expanded in a power series, the third-integral
method is not applicable, (except in special cases
like the restricted three-body problem, etc.), while
Gardner’s method is in principle still valid.

We apply now both methods to the simple one-

dimensional Hamiltonian
H = }wiz] + 1)) — esinwt 2. (48)

This case can be reduced to the well-known
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Mathieu equation™

d*y/dz* + (a — 2qsin 22)y = 0, (49)
by setting
Y=z, wt=2z a=4d/0’, q=4¢/’. (50)

In this case the transformations proposed by
Gardner can be explicitly carried out, and we can
compare the adiabatic invariant directly with the
“third” integral. The “third” integral in second-
order approximation is

® = izl + )
2w coswt _z,y, — sin wi(y; —

+ R

wizy)]

2
€

t 5@ — 2 {cos 2wt(y; + wiz]) — 2y — wial)
1

(@ — o)
+ 6wy sin 20t ]} 4+ oo . (51)

In applying Gardner’s method we have to caleu-
late the area J of the ellipse (48). Using formulas
(32) we find

[ + 200) cos 2wi(yi — wiz))

k
. (w—_(—zzi:;m—wt); , 52)
and
0 = cos l:__.__h_i_(“’? —(22;5in wt)? x.]- (53)
Then
2! = (0} — 2esin wi)iz,, (54)
h = (Wi — 2esinwl)iy],
F, = (o} — 2esin wl)'z,y], (55)
and
H' = }(i — 2esint)'(z" + o1’)
we cos wl  xy] (56)

- 2(wi; — 2¢ sin wt).

The next change of variables is effected in a
similar way. After some operations we find

we cos wt(y}”® — %)

= gt — : =
Fa = o = g — 2eomay © ©0
S o G o e cos wi Yy’
VT T 4 — 2esin wi)l? (58)
cos wt %}
= togs o

wi)?’

12 N. W. McLachlan, Theory and Applications of Mathieu
Funetions (Clarendon Press, Oxford, 1947), pp. 77, 90.

4w} — 2esin
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Tasre 1I. Comparison of the “third” integral with the adiabatic invariant.
@iy w € T Y10 Hinic ‘(2H)”’inlt Hm-! Hysn Prax Prmin J(nmn J(“mm
1. 0.2 0.1 0. 0.1 0.005 0.01 0.0055 0.0045 0.00499 0.00497 0.005000 0.004998
1. 0.2 0.2 0. 1. 0.5 0.2 0.59 0.38 0.50 0.48 0.500 0.499
1. 0.8 0.2 0. 0.5 0.2 0.61 0.35 0.50 0.45 0.52 0.44
1. 1.2 02 0. 1. 0.5 0.2 0.87 0.44 0.58 0.53 0.72 0.48
and
H" = 3@} — 2esin o) (" + 41) + 0. (59)
Similarly, we find
2 2 . 2 .
Vi s il w'e[11e cos” wi — 4 sin wi(w;, — 2esin wt)]}
s m {1 * 32(w; — 2esin wl)’ ’ (60)
2 2 B 2 .
t o il w’'e[1le cos” wi — 4 sin wilw, — 2esin wt)]}
0 y! {1 + 8(‘-0? s 2& Bi[l wl)a ] (61)
and
3 w’e cos” wi 1 2 o 3
yHr 2 2 = e L1
H" = Y — 2¢sin o) l:l 32(w} — 2esin wt)“J(x' + 3" + 0@). (62)
The adiabatic invariant in second-order approximation is
a3 _ 112 ey L} 2 8 _ g ade ol OE cos wi  x,Y,
— = _"ﬁ_"'___':'_; -
IV = 2@ + W) = o acsmal (!" F o — ZeEB i — T e b
i wele cos® wi[723(w] — 2esin wt) — 5y;] — 2sin gt(wf — 2¢ sin wi)[7(w; — 2¢sin wl) — 1]} ) ©3)
8(w] — 2esin wif)®

Both expansions are equivalent if e and w are
small. If we omit all terms of order higher than
two in € or @ we find

2 2
@[1 4 €l + 30%)
€ sin wi

160}
{2+ et 4 <22t

Wy

- J(S)wl

2

2 2 2
(1 — wizy

B | =t

e COS wi & sin’ wit
e T o TV R S

]
Wi 2&.’: (3yl

2 2
— W

x 3e%w 8in 2wt
2w;

w'esin wl , 5

4&: (yl - fof)

Y +

2 2

i %5 [Tw?z? — 5yt + sin® wi(15y; — 13w?:c:)]}~
1

(64)

The above form of the “third”-integral expan-
sion is preferable if e is small (¢ small in Mathieu’s
equation) if we are not near a resonance («* = wj,
o = 4¢?, and in general o® = 4wi/n’, ie., a = n°).
The resonance cases should be treated separately.

A comparison of the values of ® and J® has

been made, in some orbits calculated numerically,

by the Runge-Kutta method. In all the cases
w, = 1, and the calculations were made for 300
time units with a step 0.02 or 0.01 time units. A
check has shown that at least four significant
figures in z,, ¥ and five significant figures in H,
@, and J* are accurate. Table II gives the data
and the values of the energy H, the third-integral
¢ [given by formula (51)] and the adiabatic in-
variant [given by formula (63)].

It is seen that for small values of w the second-
order adiabatic invariant J‘* is better conserved
than the second-order *‘third”-integral . However,
for w/w, approaching unity, @ is better conserved
than J . This is more evident for larger w. The
conservation of the zero- and first-order “third’’-
integral and adiabatic invariant is always worse.

This example gives the range of values of  for
which an adiabatic invariant is useful.

If w is near a resonance case, the above formulas
are no more valid, although resonances are not
apparent in formula (63). In fact, in a numerical
example (in the case o w; = 1), we have found
continuous increase of the amplitude of oscillations,
and J' is not even approximately conserved.
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This fact indicates that the action J is not an
adiabatic invariant if there is a resonance between
the frequency of the perturbation and the eigen-
frequency of the system. This fact is mentioned by
the first authors that applied the adiabatic in-
variants,'® but is rarely mentioned explicitly in
modern papers.

The example discussed here shows clearly the
distinction between the “third” integrals and the
adiabatic invariants. They are expansions in terms
of different small parameters; in the case of the
third integral we have a small term, while in the
case of the adiabatic invariants we have a slow

13 See, e.g., A. Sommerfeld, Atombau and Spektrallinien
(F. Vieweg & Sohn, Braunschweig, 1951), Vol. I, 7th ed,,
pp. 370, 698.
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dependence on the time and/or some variables.

This example shows further that the relative
accuracy of the two expansions depends on the
values of the parameters used. It indicates also the
disadvantage of the adiabatic invariants, in that
they cannot be used in resonance or near resonance
cases.
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The wave mechanical form of the cluster integrals in the activity expansion for the pressure of
nonideal gas is written in the Wiener functional integral form. The various pieces of the nth-order
cluster integral may then be easily expanded around the classical limit [Wigner-Kirkwood (WK)
expansion] using the procedure of Gel'fand and Yaglom. It is shown that the reducible diagrams fail
to factor at O(#*), and thus the Mayer theorem that only irreducible diagrams come into the virial
coefficients of the density expansion of the pressure is valid only through O(#). As an example, the
WK expansion of the third virial coefficient is worked out to O(%*). 1t is shown also how the functional
integral formatism may be used to expand quantum statistical mechanical perturbation theory about

the classical limit.

IIE statistical mechanics of a nonideal gas

developed from the grand canonical partition
function gives a convenient cluster expansion for
the pressure and density of the gas:

ﬁp(ﬁ| lu') = ; zibi(ﬂ): (1)
p= Z-; jzibl'l (2)
CL

where the activity is z= (®*) (2rmkT)!(27h) ™ = pe
with ¢ = py, -+ 6u the chemical potential; éu de-
pends explicitly on the interparticle interaction.
Equations (1) and (2) are parametric equations in
z (or 8u). By solving Eq. (2) for z as a function of p,
one may eliminate the chemical potential and ob-
tain the more convenient virial expansion for the
pressure

BPB, p) = p+ Bup” + Bip’ + - (3)

The cluster integrals b; in the activity expansion
are known from Mayer's work for all j and are well
defined for both classical and quantum systems.!
The diagrammatic representation of the b; has the
important topological property that the j particles
of a cluster are at least singly connected. The elimi-
nation of éu in going to the virial expansion, Eq.
(3), gives a remarkable topological result: the
diagrams for the virial coeflicients are multiply
connected (irreducible); the class of singly connected
diagrams has been eliminated.” This irreducible
cluster theorem due to Mayer is known to fail for

* Work performed under the auspices of the U. 8. Atomic
Energy Commission. ) .

1 Present address: Dt}]part.ment of Physics, Princeton
University, Princeton, N. J.

1T, K. Hill, Statistical Mechanics (McGraw-Hill Book
Company, Ine.,, New York, 1956), Chap. 5. )

t A complete treatment of this theorem and linear graph
theory app[ied to cluster expansion is found in the chapter
by Ford and Uhlenbeck in Studies in Statistical Mechanics

(North Holland Publishing Company, Amsterdam, 1963),
Vol. L.

systems at densities high enough so that quantum
statistics are important. However, to our knowl-
edge the limit of validity of this theorem has not
been discussed for systems of distinguishable parti-
cles interacting according to the laws of wave me-
chanics. There is no particular reason to expect the
irreducible cluster theorem to be true in general,
but for some systems it would be convenient if it is
approximately true. Thus with ordinary nonideal
gases at intermediate temperatures, wave mechani-
cal effects become numerically significant in the
virial coefficients.” Also, for high-temperature plas-
mas, wave mechanical effects can be important,
while quantum statistics effects are negligible.

The proof of the irreducible cluster expansion
for classical systems depends crucially upon the
factorizability of singly connected diagrams into
products of multiply connected diagrams. In this
paper we show by an example that the quantum
generalizations of the singly connected diagrams
fail to completely factor, and that the error in the
near classical limit is of order A",

The discussion here will be limited to the second-
and third-virial coeflicients, since extension to the
higher-virial coefficients will be evident. The cluster
integrals in Eq. (1) may be written as

b = 3B, b, =31(D+30),

where B denotes the sum of all interactions of two
particles. C denotes three-particle interactions in
which the first interacts with the second, the second
with the third, but not the first with the third. D
indicates three-particle interactions in which all
three interact with each other. Elimination of the
chemical potential from Iqgs. (1) and (2) gives

3 Hirschfelder, Curtiss, and Bird, Molecular T of

Gases and Liquids (John Wiley & Sons, Inc., New York,
1954), Chap. 6.
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BP = p — 4By’
— 3D+ 3(C -8B — . (5

The quantum mechanical definition of B for
two particles of mass m, and m, is

1 (2xh)’ (2xh)*

V 2em, k7)Y (2rmokT)?

-Tr {exp [—8(K, + K, + 2)]
— exp [—B(K, + KJ)]}

d*r, d'ry . _p. i
i =1 = dr i 6
:) ff v (e ) f Ti2 fra (6)

where K, and K, are the particle kinetic energy
operators, u,, is the potential interaction, and
f = ¢ ™ — 1is the usual Mayer f function. Similarly,
C for three particles is

1 (2xh)° (2rh)* (2xh)*

V @amkT)} CrmokT)? (2omakT)?

X Tr {exp — B(K, 4+ K, + K; + w2 + )
— exp [—8(K, + K, + K5 + )]
— exp [—B(K, + K, + K; + ua)]

+ exp [-B(K, + K. + K]}

3, 3 3.
—_— ff g_ELdVTLd__)_-’ (e—ﬂun _ 1)(8—6\": _ ])
Fr=0

= ( [ @r. j)( [ r. ;23)- @

In the classical limit, &~ = 0, the quantity C factors
as shown in the last line of Eq. (7), so that C'(123) =
B(12)B(23). C is the lowest-order example of a
singly connected diagram. Since it factors for & = 0,
the quantity ¢ — B* in the third-virial coefficient
vanishes, and one finds B; = — 4D, where

B(12) =

C(123) =

D w Tlf f f &y d'ry & fuofashii.

Because of the classical factorizability of the singly
connected diagrams, it could be proved that all the
virial coefficients involved only multiply connected
diagrams. In the classical picture the particles
are points interacting via w(r), but with 2 # 0
the particles are wave packets of extension X =
h/(2mkT)? and the simple classical factorization
is no longer possible.

In order to investigate the extent to which the
quantum form of € factors, we would like to write
B and C in a form closely resembling the classical
expressions as given by the second lines of Egs.

799

(6) and (7). Wave mechanics as indicated by the
trace operation in the definition of B and C may
be conveniently expressed with the help of the
Wiener functional integral. For a thorough treat-
ment of this formulation of wave mechanies into
statistical mechanical problems, the reader is re-
ferred to the very comprehensive paper of Gel'fand
and Yaglom,* and also to the review by Brush.’
Our notation and the mathematical manipulations
follow Gel'fand and Yaglom. We use the functional
integral formulation to caleulate the Wigner—
Kirkwood® expansion of B and C in powers of A*
about the classical limit.

As a Wiener functional integral, B may be
written as

3 3
B(12) = ff @I}d—rgff dz 0.1510)d% 0,1,5: @) Fi2,

where

Fy, = Flr + Xs8,0)] — [r: + X8:0)]}
= exp {—,6 f dvulr;, + X;8,0) — A:8.()] — 1}

e — 1, (8)
=0

F., is evidently a quantum generalization of the
Mayer f function. The quantities X,s,(v) and A,s,(»)
are the deviations of the particles from the classical
paths as the particles propagate from inverse tem-
perature “time” 0 to g (v = 0 to v = 1). For the
two-particle system, one can immediately make a
change of variables

Lan(@) = Xi8,(0) — K:8,(0), Q)

where A%, = A% 4+ A2 = 0*/2u,kT (w1 is the re-
duced mass) corresponding to the relative motion.
The center-of-mass motion integrates out. Thus
one finds

B(12) = fdﬂi":zfdico.uﬂ(‘?’)F[rsz + Rim(®)]. (10)

One now makes a Taylor expansion of Fy, about r,,,
4
Fip=(@€"—1)+ e“”{-:&.zf dvn()-VU
o
1
+ (xfz/z)[ [ [ dvs dos none): vUVU
Jo

- f dv wBnl): VVU] } : (11)

1. M. Gel'fand and A. M. Yaglom, J. Math. Phys. 1,
48 (1960).

5 8. G. Brush, Rev. Mod. Phys. 33, 79 (1961).

¢ L. D. Landau and E. M. Lifshitz, Statistical Physics
(Pergamon Press, Ltd., London, 1958), pp. 96-103.
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where U = pu. The functional integrals can be
performed on powers of the Cartesian components
of n (the moments of the Wiener measure); the
results for say the z component are

fdicn.:)ﬂ(ﬂ)'ﬂ:(vl) cor e Uarer) = 0,

9= (vlk)

vo s B@igaar Vias)s

fdfa(o.lm(v)q,(ul)
= 2 b0

“isk

(12)

where the summation is over all partitions into

pairs of the indices 1, 2, -+, 2k and
b(vl» Uz) = 2”1(1 - "'2)! ¥ S Uz
= 20,(1 — v,), v, > v,

Since the odd moments, i.e., integrals of 7.(»)***'

vanish, one is left with only even powers of Aj,.
The final step is the integration over the various
v variables in the Taylor expansion, Eq. (11). The
result due to Yaglom is"*®

B(12) = [ d'ra 5,
F(ro) = Frz = fro + € [Rlxas + Kisbia + -],
x = T5(VU)* — }V*U,
¢ = 53s(VU)' — A(VU)IVU
— HVUVU: VVU
+ A(VU) + d6VVU: VVU
+ #%VU-VVU — &V'U. (13)

Some integrations by parts brings this result into
the more useful form

B(12) = fdsr {(e_u - 1) + e_U|:— Rg"i%

.E_'—‘( " 192’:
120 36U +3

+ 2? + U'ﬂ) ]}

+

7 A. M. Yaglom, Teoriya Veroyatnostei i ee Primeneniya
1, 161 (1956).

8 The 0(#%) term has been worked out by T. Kihara, Y.
Midzuno, and T. Shizume, J. Phys. Soe. Ja.pa.n 10, 249 (1955).

AND B,

FISHBANE

Using the functional integral notation, the quan-
tum generalization of any classical cluster integral
may be written down. One needs only to replace
the Mayer f,; functions in the classical theory
with the F;; defined by Eq. (8) and integrate over
the path variables, X;s;(»), for each particle in the
cluster. Thus € as defined by LEq. (7) becomes

C_ff d’ry dsrzdarsff & o 10

'd?-w.usz(”) di(ﬂ.nss(z’)

Flr, + Xs1(0) — Rs(0) ] Fras + Kos.(t) — Xsss()].
(14)

The integrand for D differs from that of C only in
that F,,F.; in C becomes F,,F,3F3, in D.

The caleulation of the WK expansion of any
quantum cluster in integral now requires only
multiplying out the Taylor expansions of the
various F;; functions, grouping terms of order
K, B, ete., using Eq. (12) for the various moments,
and finally performing the ‘““time” integrations
over the v's. With cluster terms involving more than
two particles, such as C, this program is straight-
forward though tedious, partly because the trans-
formation to relative motion variables is no longer
possible. The result of the caleulation of C to O(h*) is

- ff d'r, dVrzdr,,
NFraFas + ¢TIV RIG 0 + KiH s + -
Gis2s = G2, 123) = —4VU1:-V Uy,
Hisos = H(ta, Tos) = 72(V U1+ VU2)°
— &V VUi VUV U,
— &V VUss: VULV Ui + VUi VYU,

+ 'slo'VUlz‘vszzs + H"GVUza'szUuA (15)
The coefficients of A;, A% ete. indicate the extent
to which C(123) does not factor into the product
B(12)B(23). At first glance it appears that the
factorizability fails already at O(R®) because of the
MV U,,» VU, term. However, one immediately
finds that integration over the angle between VU,,
and ¥V U.; makes the coeflicient of A2 equal to zero.
This same statement will be true for any cluster
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diagram which factors in the classical limit. Con-
sequently, the failure of singly connected diagrams
to factor begins with O(h"'). Integration over the
angles in the O(h') terms gives the error in the
factorizability of C as

C(123) — B(12)B(23)

"‘; ff darn darn:: c_w"”I"’le.as

I

] =(Usat+Uas l
gx;f dsrm dsfne SO J{ﬁ U::‘U;g

2(1;3) 1 ( ., 2(];2)
T = 60 Uzs 12 + 1o

o 2
Ty - Tas

The expansion of D can be worked out in the
same way. We give here the result for the complete
third-virial coefficient [from Eq. (5)] written as if
the three particles are different.

1 2
—@wig+

1

+ 35 4 (16)

(v +

By(123) = —3[D(123) + C(123) — B(12)B(23)
+ €(231) — B(23)B(31) + C(312) — B(31)B(12)]

_ A ff d'r, d’ry d'rs
T 73 V

X [(XiGha.2s + AiGos.z1 + KiGar,12)
+ (KiH 12,20 + MaHos s + XiH s 00)
+ AiRN(Gh2,20Ga1.02 + 12.3)

+ XiK3(Gar 212Gz, + Lsn o)

+ KiXi(Gas,0:G 12,28 + Tos.ny

+ KlKiGas mixio + AisAs

'Gl2.28x13 G 7\:37\“:(1‘3:.127(23]}'

{F1:F2:F5 + o (Uit Uant )

(17
where the additional quantity in the O(h') term is

I,:= —lla‘VUzstss‘vau- (18)

So far in this work the functional integral formu-
lation has been used to evaluate the trace of opera-
tors occurring in an exponential, exp [—8(K -+ w)].
It is worthwhile to note that the functional integral
formulation works equally well for powers of the
operators, such as a perturbation expansion in
powers of Bu. For example, the nth term in the
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expansion of the second-virial coefficient from

Eq. (6) is’
B.(12) = T%fds'-" f dro.1y1(t)

{~g[@uk+h@$. (19)

A Taylor expansion of Ulr 4+ An(v)] and evalua-
tion of the moments of the Wiener measure gives'®""

B.(12) = §:n}_)_ f d'r
-{U" 2|2 + 2D voyv ]

+ K‘Iig-T) (V'OU +nln — NEVU: VU

+ ¢ VVU: VVU + A(VU)HU*
+nn — D — 2)HVUVU: VVU
+ A(VU)yVvo)ut

nln — n — 2)(n —
288

+ 3) (VU)“U""] + }

(20)

Summation over n gives Eq. (13). Similar results
are easily obtained for the perturbation expansions
of C and D.

? Note that the n different » integrations each from 0 to 1
are the sum of n! different time orderings of the interactions;
all the time orderings are equal in this case. Using this fact
and writing out the Wiener measure, Eq. (19) becomes

B.(12) = (—B)" f‘ o [
><(4w)’f ---fw‘m ceed'n,

X u(r 4 An) - -+ ulr 4+ An)
=ny?/4py =(ng=my)?/4(pa—uy)

X )’ i — )
—(Ra=nn~1)*/4(en~vn—-1)

e e-n.'/l{l—u)

X (o — 0ol (4l — )]

a form obtained by H. 8. Green, J. Chem Phys. 20, 1274
(1952). The quantity

—(mita—ng) /4 0ier—ry)

e o
v)*

[4T(Ui+; =

is the free-particle propagator which takes the particle from
the space “time” point r + An;, Bv; to © + Anipr, Prigr.

1 For n = 1 the guantum corrections are zero, since
[ dV* = 0; thus B, is completely classical, i.e., B, =
— [ d®rU, as it should be.

1 For nth-order perturbation theory the functional integral
is véry much easier to use than the method given in an earlier
paper; H. E. De Witt, J. Math. Phys. 3, 1003 (1962).
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The time-dependent Schridinger theory of scattering is studied rigorously with the potential V'
replaced by e +!tIV, Sufficient conditions are given that the Mgller wave-matrices Q* be obtainable
from this theory as e — 0. The conjecture that this theory can be used to define a reasonable S-matrix
when the ©* do not exist is shown to be false for the Coulomb potential. It is remarked that the
Goldberger-Gell-Mann switching procedure also breaks down in this case,

INTRODUCTION

N dealing with problems in the nonrelativistic
theory of scattering, it is frequently convenient
to switch the interaction off adiabatically by one
means or another.” This paper studies the switching
procedure in which the potential V is replaced by
e "'"'V. As far as the author has been able to tell,
no previous rigorous presentation of this procedure
has been given in the literature.
The idea of the adiabatic switching procedure is
the following: given the Hamiltonian

—A :
H—HO-{-V—~2m+T’ (1)

[A is the Laplacean, V a multiplicative operator
given by the function V(x)], define a scattering
matrix as follows:

(a) Replace H by the time-dependent Hamil-
tonian

H() = Hy+e "'V, (2)
(b) Solve the Schriédinger equation (A = 1)
v dyY()/at = H.(1)y(1) 3)

by finding a unitary operator U,(t) such that
U@ = 1, 1aU.(0)/at = H (U (D). (€))]
[Then ¢(¢) is given by U, (t)¢(0).]
(¢) Form the operators
Q.(t) = U(tye ™" (5)

and prove the existence of the “adiabatically
switched Mgller wave matrices’:

* Present address: Department of Mathematics, University
of Rochester, Rochester, N. Y.

1 M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91,
398 (1953). F. Coester, M. Hamermesh and K. Tanaka, Phys.
Rev. 96, 1142 (1954) and references therein; J. M. Jauch and
F. Rohrlich, Theory of Photons and Electrons (Addison-Wesley
Publishing Company, Inc., Reading, Mass., 1955), p. 134,
S. Schweber, An Introduction to Relativistic Quantum Field
Th:eso)réy (Row, Peterson and Company, New York, 1961),
p. 322,

2 = lim Q.(0). (6)

t—zm®
(d) Prove the existence of the operators

QF = lim Q* (7)

s
and use these to define the scattering matrix S,:
Sy = (20)* Dy,

or, somewhat less ambitiously,
(d") define the switched S-matrix S, by
8, = (@)*a
and prove that the limit

S¢ = lim S,

e—0

(7a)

exists. Then define the scattering matrix as S
[Naturally, if 2% converged strongly to @5, as in (d),
We would have S, = S}.]

This program is offered as a substitute for the
usual method, which is:

(a) solve the Schridinger equation without switch-
ing

1 ay(l)/at = Hy () )
by taking for ¢(f) the function U(t)¢(0), where
u@) = e**. (9

(b) Form the operator

Q) = elet . (10)
(¢) Prove the existence of the operators
Q* = lim ¢™'e” ™" (11
f—+m

and use these to define the scattering matrix S

8 = (2')*a. (12)
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It is hoped that
(1) When Q* exists, Q7 exists and
2 =0

so that the adiabatically switched theory yields
the correct S-matrix as e — 0.

(2) When ©* does not exist, Q5 of (7) or at
least S, of (7a) ean still be defined, and used to
produce a reasonable S-matrix for the theory.

In the following, we investigate the mathematical
existence of the switched theory (that is, existence
of U.), Q% ete.). Although giving proofs only
for the case of potential scattering, we mention
results for the case of n-body scattering, and give
an idea of the structure of adiabatically switched
theories in general. We then investigate the truth
of statements (1) and (2) above.

I. ADIABATICALLY SWITCHED THEORIES

Orientation: We work in the Hilbert space £°
of square-integrable functions in one three-vector
variable x. The £* norm of the function f is denoted
by |lf||. We consider a Hamiltonian H of the type
given by (1) acting on this space, where V satisfies
either or both of the conditions:

(1) V(x) is square-integrable or

(2) V(x) is locally square-integrable and bounded
for large !x!. In this case® V is “infinitely small”
compared to H, = —A/2m, by which is meant
the following: denote by ©(0) the domain of the
operator O. Then, if f & ©(f,), it follows that
§ € D(V) and

VA < e [[H + 8 I, (13)

where a can be chosen as small as desired, and the
bound holds simultaneously for all f & D(H,).
Further, the operator H is (essentially) self-adjoint,
D(H) = D(H,) is dense in £°, and ¢™*** is unitary.

We now consider the time-dependent Hamil-
tonians H.(f) of Eq. (2) and try to solve the
Schrodinger equation (3) by looking for operators
U.(t) satisfying Eq. (4). The question of the existence
of solutions to (4) for general H () is not at all
well understood. Even in the relatively simple
case at hand the problem offers such unappetizing
features as noncommutativity of H,(f) with H,(t)
for ¢ s t’. Nonetheless, the present case is covered
by a theorem of Kato® which affirms the existence

* T. Kato, Trans. Am. Math. Soc. 70, 195 (1951).
3T, Kato, J. Math. Soc. Japan 5, 208 (1953).
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of U/t) defined on all of £°, mapping D(H,) to
D(H,) and satisfying

d/anU (e = H(DU (t)e (strong derivative) (14)

for ¢ & D(H,), i.e. a solution of (4) in the usual
sense. This is a special case of Kato’s Theorem 4.
(Ref. 3, p. 211), with Kato’s A(f) equal to —iH (1),
and Kato’s U(f, 0) equal to our U,(f). The proof
that —eH (t) satisfies the hypotheses €, to C. of
Theorem 4 is straightforward but requires much
writing, and we leave it to the reader. We remark
only that the simplifying properties of H,(f) which
guarantee existence of U,(l) are essentially these:

(a) the very simple and smooth dependence of
H.(t) on t and

(b) the fact that all the H ({) are self-adjoint
operators with the same domain ©(H,), as follows
from the first-mentioned paper of Kato since ¢ *'*' V'
is “infinitely small” compared to H,.

It can be seen very simply, using Kato's results,
that U.(f) is a unitary operator. This is indicated
in the Appendix.

Having established the existence of U,(t), it is
now easy to prove the existence of the operators
Q* of Eq. (6).

Theorem 1: Define @,(f) as in Eq. (5). Then
Q.(t) is unitary and Q,(!) converges strongly as
t — =4 @ to operators Q7.

Proof. Q,(t) is clearly unitary, since both U*(¢)
and e """ are unitary. Thus, it suffices to prove
convergence of Q,(f) on a dense set, which we choose

to be D(H,). We prove convergence as { — -+ «:
let ¢ & D(H,). Then, for any i,

200 = o) + [ ¢ 25 12,000

& wlh) & f dr UA(t)e "\ Ve, (15)

We can now prove convergence of Q,(f)¢ by showing
that [ dt’ ||[(d/dl")(Q.(t')¢)]| exists. But this is
trivial, because

ll@/dneelll = [|U%(Be " Ve ||

= &M [V ]l (16
and aceording to (13)
[1Ve™ " || < a |[Hoe™"6]] + B [[el]

= a ||Hell + 8 [lell Q7)

[in (17) we have used unitarity of e ***‘). Thus

|1(@d/dn[2.Bell] < e *'*'(a [[Howll + 8 llel)  (18)
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and the integral of the left-hand side from ¢, to
exists. The proof of convergence as t — — o is
similar.

To give a more complete insight into the structure
of the adiabatically switched theory, we also prove

Theorem 2: Define 2,(t) as in Eq. (5). Then
Q*(1) is unitary and Q*(l) converges strongly as
t— 4= to Q)% where 2% are the operators defined
in Theorem 1.

Proof. Q%(t) is clearly unitary, and as in Theorem
1, we shall prove convergence on D(H,) ast — 4 o,
It suffices to show that [7 dt' ||(d/dt") [Q@%(t)e]l|
exists for ¢ € D(H,). But

[ld/dn[@%(De]|| = [l ‘e " VU ()]
=" ||[VU.(Del| (19)

so that we will be finished if we can show that
||[VU.(t)¢|| is bounded. This is not obvious but is
proved in the Appendix, completing the convergence
proof. That the limit of Q%(t) is Q; * is seen as follows:
strong convergence of £,() to £* implies weak
convergence of Q%(f) to Q7*. Since we know that
actually Q%(f) converges strongly, it must converge
strongly to 2%*.

It is Theorem 2 which distinguishes the adia-
batically switched theories from the ordinary ones.
In any theory with bound states, it is false that
Q*(1) [see Eq. (10)] converges strongly on all of £
In fact, as is easy to see, 2*({) fails to converge
strongly on any bound state, but instead converges
weakly to zero. This means in turn that Q** an-
nihilates the bound states, and that Q*, although
isometric, is not unitary. We summarize our in-
formation on the adiabatically switched theory in
the following theorem.

Theorem 3: The operators Q% are unitary. There
are no bound states in the adiabatically switched
theory in the sense that H,.(f) has no eigenstate
for all t. The adiabatically switched theory is asymp-
totically complete in the sense that the asymptotic
states Q*¢ span all of £°.

Proof. Both 9% and Q;* are the strong limits of
sequences of unitary operators, and both are, there-
fore, isometric, i.e.,

o af =1
QF Q=1

(isometry of Q7%),

and Eqgs. (20) imply that Q% is unitary. There are
no bound states in the theory, for if ¥5 were such
a state, with energy Ej, we would have
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ﬂt(‘)\ba = 3'”"U-(5)'/’a = e.g.re-.xa:‘bh (21)

and the right-hand side converges weakly to zero,
while we know the left-hand side converges strongly
to something with norm ||y;|l, as t —» =& o=, as
indicated.

Finally, since the range of a unitary operator
acting on a Hilbert space is the entire Hilbert
space, we have symbolically

.’ = ¢ (22)

so that the theory is asymptotically complete.

Results in the n-body case. In the n-body case,
we have only to redefine H, and V by

Ho= 3= g (

) 23)
V=>XVux)+ X Vilxi—x),

f=1 1€1<i%n

and make the same assumptions on
Vi(0<i<j<n)

as we made previously on V(x). Naturally, we also
replace £ in one three-vector variable by £° in
the n three-vector variables x, -+ x,. Then de-
fining H,(t), U.(t), etc., as before, Theorems 1, 2,
and 3 also hold in the n-body ecase. This implies
that the n-body adiabatically switched theory is a
one-channel theory, i.e., there is only one possible
asymptotic behavior for any wave-packet U,(l)¢,
and this behavior is evolution according to the free
Schrédinger equation describing n noninteracting
particles. This is clear since by Theorem 3 if ¢ € £,
there are states ¢* € £° such that ¢ = Q*¢*. Then
by Theorem 1, U,(t)¢ approaches, as { — == =, the
states e~ “"*'y*,

We now turn to the problem of obtaining the
usual Mgller wave matrices @* from the operators
Q* as e — 0.

II. CONVERGENCE TO THE USUAL THEORY

ASe= 0

We first take a large class of potentials for which
Q" is known to exist and show that for those po-
tentials Q* is the limit as ¢ — 0 of Q% For con-
venience, we summarize some results in the liter-
ature.

(A) If V(x) is square-integrable or

(B) V(x) is locally square-integrable and for
some M > 0

|V(x)| < -l% for |x| > M, witha > 1,
x
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en the operators * of Eq. (11) exist as strong
aits on all of £°.* Convergence (ast— + «) can be
oved by showing that for ¢ belonging to a certain
t $ dense in £° and some {, [and thus for any ¢,
1ee by (17) ||[Ve #*'¢|| is bounded],

d
i e

dt =

f [Ve ™| dt < =. (24)
is so chosen that § C D(H,). (For instance, $
n be taken to be Schwartz’s space § of infinitely
Terentiable functions of rapid decrease as [x| — =).
We now prove the following.

Theorem 4: If V(x) satisfies (A) or (B), then

lim Qf = Qf = (25)

=0

nt

e limit holding in the sense of strong convergence;
., statement 1 of the introduction is true.

Proof: We give the proof for Q*. It suffices to
ove convergence on a dense set, which we choose
be the set $ discussed above. For ¢ & 8§ and any
> 0, we have

2 — 2|l < [l(Q7 — Q())el

+ [[(2() — 2%el| + [[(() — 2ell.  (26)
e can estimate

- ( [ aanyiawie ar ]

< [ | [9.(t')¢1“ ar

- -[;we—u’ l!Vc—n‘Hot'so”dt,

= f,m [|Ve ™" e|| at’, (27)

ere we know the last integral converges since V
isfies (A) or (B) and ¢ & § so that (24) holds.
ice the right-hand side of (27) is independent of
ve can, by taking ¢ large enough, estimate the
t-hand side of (27) uniformly in e. Likewise, we
1 make ||(Q() — 2%)¢|| as small as we like by
osing ¢ large enough.

We now show that for fixed ¢ the term
1(@.(t) — 2®)el|

'J. M. Cook, J. Math. & Phys. 36, 82 (1957).

| J. M. Jauch and I. Zinnes, Nuovo Cimento 11, 553 (1959).
light extension of the work of the second paper is necessary
1ndle potentials satisfying (B).
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vanishes as ¢ — 0. Since ,(t) = U*()e ““* and
Q) = e™e ™ it is enough to show that
[IlU%(t) — e*}Y|| vanishes as ¢ — 0 for any
¥ & D(H,). [If this has been shown, let ¢ & 8.
Then ¢ € D(H,) and e *™'p = ¢ € D(H,), so
the result follows.] Using the fact that U*(0) = 1
and some obvious manipulations, we have for
¥ € D(H,)

[(UA) — e™)¥ll = [T — De™ ¢]|

‘j; % [U"{(t')e—‘""]e""‘llz

< [ - eyl @)
Also,
”Vemiuct'—n‘ll” S a ”He—ui(l’—!)'p”
+ b [l = a [[HY|l + b l¥ll.  (29)

Equation (29) follows from the Appendix [Eq.
(A7) at { = 0; remember that H,(0) = H]. Thus
the integral on the right-hand side of (28) is bounded
by const. [§ (1 — ¢ **") di’ and converges to zero
as e — 0.

Remark: the proof that |[(U*() — &'')¢|| van-
ishes as e — 0 for ¢ € D(H,) did not depend on
V satisfying (A) or (B). It is enough that V satis-
fies (1) or (2) at the beginning of Sec. I. We shall
use this result later in the case of the Coulomb
potential, which satisfies (2) but not (A) or (B).

We now complete the proof of Theorem 4 as
follows: Let » > 0. Choose t so large that, for all
e > 0, each of the first two terms on the right-hand
side of (26) is less than }7. Then choose ¢ so small
that the last term is less than %». The result is
that if e is small enough

[l(@ — 2|l <7, QED. (30

Result in the n-body case. Theorem 4 holds in
the n-body case provided that Q* are interpreted
as the Mgller wave matrices for the channel in
which all particles are asymptotically free.

We now investigate the situation when V(x) is
the Coulomb potential e,e,/|x|, which is of the
second type mentioned at the beginning of Sec. I.
Again, we summarize certain facts for the con-
venience of the reader.’

Define the “distorted free-propagation operator”

U.(t) = exp [—iH,.()] (31)

s J. D. Dollard, J. Math. Phys. 5, 729 (1964), and Ph.D.
thesis, Princeton flniversity (1963).
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with
Ho(t) = Hot + e(D)[meses/(—A)') log (—2 |¢] a/m)
= Hot + Hi(2), (32)
where
Ho= —A/2m, ) ={ 1G>0 gy
-1 (¢t <0).
Then with
= (—4/2m) + (eiea/ x]), (34)
the operator
Q) = ™' U() (35)

converges strongly as { — === to operators Q%
which correctly give the Coulomb scattering matrix
elements. This result implies that the operators

Q(t) - eiﬂere—ill.l
cannol converge strongly, since, writing

Q) = U ()U, ()% ™", (36)

it is easy to show that Q(¢) converges weakly to 0
as { — == o because U, ({)*¢ """ does. This is done
as follows: In the case at hand,” any function
¥ € £° can be written as the sum of a function ¢,
belonging to the subspace spanned by the bound
states and a funection ¢ which belongs to the range
of both ©! and @7 and can be written as Q*f*. To
verify weak convergence of Q(t) to zero, it thus
suffices to verify that for any ¢ € £° the expression
(¢, 2(t)p) converges to zero when (1) ¢ is a bound
state or (2) ¢ has the form Q%f*. In case (1), we
have (¢, Q()¢) = e *'(y,e "™'¢) where E is the
energy of ¢. Then convergence to zero is clear.
(For a rigorous proof, one uses a slightly more re-
fined version of the Riemann-Lebesgue lemma.)
In case (2), using the fact that U ()* '"'Q* con-
verges strongly to (24)*Q% = 1 ast{ — =, we
find that (¢, Q(t)¢) asymptotically has the form
(f*, U%(t)e ***'¢) which goes to zero (again by the
Riemann—Lebesgue lemma.) Thus £(f) does not
converge strongly, and 2% of (11) does not exist
as a strong limit.

The convergence proof for Q.(f) in Ref. 5 (as
l — + =) proceeds by showing that

I.

for {, > 1 and a suitably chosen set of functions ¢
We will now give a counterexample to statement

d .
di Qc(t)s”l dt < = (37)
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(2) of the Introduction by showing that the correct
scattering matrices Q% cannot be obtained by the
method of adiabatic switching outlined in the intro-
duction. In order to do this, we first prove that the
Q* are obtainable by a different switching procedure.
This is done as follows: the time-derivative of
U.(1) is given by

z‘dgtr(t) - (Hn + (:’."E"'ﬁ)a,(:) (t # 0).

We will define an adiabatically switched version
of U.t), called U.,(f), by requiring that U..(1)

should agree with U,(f) at some time {, and satisfy
the equation

idU. (1)
di

(38)

meeqe

= (Hu + (— A)W)U“(!) (¢t # 0). (38a)

Since the point { = 0 is clearly a “trouble point”
in (38) and (38a), it is convenient to avoid talking
about it by defining U, (¢) only for, say, |t! = t, > 0.
We thus require

Fort > 1, : U, (t,) = U.(l,) and U..(t) satisfies
(38a).

Fort £ —ty: Ug(—
satisfies (38a).

tﬂ) = [Ie(—tu) ﬂ.lld U:t(t)

I'rom now on we deal only with the case t > t,.
The case t < —1, is dealt with analogously. For
t > 1, we can write

Ue(t) = exp (—iHo.(1) (39)
with
me,e, . ,""
}Iﬂfl(l) - I{ot + _A)‘!f dt
me,e, (=244)
* (—a) log m (40)
It should be clear that
U..(t)) = U.(ts) (41)

and that U, (f) as defined in (39) satisfies (38a).

We now let U,(t) be the operator (4) whose
derivative is H ({))U (t), where H,(l) is the adia-
batically switched Coulomb Hamiltonian —A/2m +

e “'"'e,e,/|x|. Then we have the following.

Theorem 5: Define Q2,(1) for [{| > {, by
Q:v(!) = Ut(t)U“(t)
Then the strong limits

lim QL () = @4

t—xm

(42)

exist on all of £°,
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Proof. As usual, we prove convergence ast — +
on a dense set, this time the set of C-functions.’
f(x) is a C-function if f(x) belongs to Schwartz’s
space § and its Fourier transform f(k) vanishes in
a neighborhood of k = 0. All such functions belong
to the domain of H, and the domain of I,..(1).
To give the proof as t — - = we estimate for a
C-function f and t, > f,, t, > 1 (this apparently
irrelevant condition makes the comparison with
Ref. 5 more immediate):

f dt
ty

d o
2 (s
f‘ T U":(i)e_“e.cg(-i’lr—l - (—_—"i—;-

% - sdllld
e,e,f dt e il(&—'

We could now use (13) and the fact that H, and
(—4)"* commute with U,.(¢) to show that the norm
in the integrand is bounded and the convergence
takes place. However, it is possible to prove a
stronger result; actually, the integral converges
without the factor e™**

j:. dtl(lzlci =)k A) ) U..0f

The proof of this fact closely resembles the proof
in Ref. 5 that

I (ii o

and will not be given here. One result of the proof
is that the convergence in (44) can be proved with
estimates independent of ¢ so that the quantity
[l () — )f|| can be made arbitrarily small
uniformly in e if ¢ is taken large enough, by the
same type of estimate as used in (27).

Using these results, we are now in a position to
prove Theorem 6.

U..(0)f H

) U (D] l\ (43)

‘ (44)

U ([)fll < =

Theorem 6: If Q* are the operators obtained
from (35) as { — 4=, and % are the operators
of Theorem 5, then

lim @y = QF
0

(45)

in the sense of strong convergence.

Proof. We prove the result for @7 on the set of
C-functions. If f is a C-function, for any t > {,

@ — @97l < (e — Ll

+ (@) — @1l + |[(QL() — 2.l (46)
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By the discussion above and the convergence of
Q.(6) to Q%, we see that by choosing ¢ large enough
we can make the first two terms as small as we like
independent of e. It remains to show that for fixed
t we can make ||(Q/,() — Q.(0))f|| as small as we
like. Since

2:.(8) = UQU.(),
Q.(0) = 7T (D,

and U%(), U..(t), ', and U, () are unitary, it

suffices to show that for any ¢t > ¢,

lim U*(f) = '™,

&0

(47a)

lim U..(8) = U.(9), (47b)
e—{Q

where the limits are strong limits on all of £°. This
is true because if 4., B, are unitary, and 4., B,
converge strongly to A, B, respectively, as e — 0,
then

”(Ath - AB}‘PH
< |[(A. — A)Be|| + ||A.(B. — B)el|

= ||[(4. — A)Be|| + [|(B. — B¢l — 0,

e— 0.
(48)

Equation (47a) has already been proven on all
functions ¢ € D(H,) [see Eq. (28)ff] and the proof
extends immediately to all of £°. Equation (47b)
is also easy to prove, for instance, by writing out
U..(t)y and U ()¢ in momentum space and using
Lebesgue’s dominated convergence theorem. This
completes the proof of Theorem 6.

We now turn to the analysis of the operators
Q% gotten by using the ordinary adiabatie switching
procedure discussed in the introduction. The exist-
ence of these operators is guaranteed by the work
of See. I, since the Coulomb potential satisfies (2)
at the beginning of Sec. I.

Theorem 7: Let Q% be the operators obtained
for the Coulomb field by the ordinary adiabatic
switching procedure:

Qf = lim U*(te ™", (49)
t—to
where U,(1) is defined after Eq. (41). Let @75 be
the operators of Theorem 5. Then
§  ad ime,e, il
0 = 0t exp{ (-A)I I:f di' &
(=214l A)]}_ -
+ log ( o (50)
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Further, neither 2% nor the switched S-matrix
S, = (23)*Q7, converge strongly as e — 0. Instead,
all these operators converge weakly to zero as
e — 0.

Proof. We first prove (50) for @*. Write
Uk(e ™" = UXU. (HUXWDe ™.  (51)
Wealready know from Theorem 5 that U* (1) U, (t)
converges strongly to @7} as t — +«. We have
only to show that

UX(he " o exp {;—-—;Te:)’

s I:fw at' e—;:i + log (_":"A)]} (strong limit).
: (52)

But this is very simple, because a glance at (39)
and (40) shows that

U:(z)e-iﬂ.l

- e fizes [ [ ar S e (2229)])
(53)

That this operator has the limit given in (52) can
be seen by passing to momentum space and using
Lebesgue’s dominated convergence theorem. Thus
(50) is proved for Q*. The proof for Q is similar.
We now prove the statements on weak convergence
to zero: it is easy to see intuitively, and not hard to
verify rigorously, that the operator on the right-
hand side of (52) converges weakly to zero as ¢ — 0.
This is because as ¢ — 0 the integral [,7 dt’e™*""/t’
diverges and the operator “oscillates itself to death.”

Denote for convenience the operator on the right-
hand side of (52) by P(e). Then (50) reads

Q; = QUP(e),
9: = ﬂ':P(E)* ¥
and by the above discussion we know that P(e)
[and thus also P(e)*] converges weakly to 0 as

e — 0. Now a detailed argument shows that in
addition to (45) the following equations hold:

lim (27 — 2%)P(d) = 0

(54)

= “_f'.',’ (207 — Q9)P(e)* (strong limit). (55)
Now ;et ¢, ¥ € £°. Then
lim (e, Q) = lim (e, QU P(Y)
= lim (¢, (207 = QDP(¥)
: x l.i_l.? (e, QP(Y) = 0, (56)

DAY DOLLARD

since the first term on the right-hand side goes to 0
by (55) and the second term can be rewritten as
(Q*¢, P(e)y) which goes to zero by the weak con-
vergence to zero of P(e). Thus @, converges weakly
to zero, and similarly for 7. We now evaluate the
limit of the switched S-matrix S.: let ¢, ¢ € £°
Then

(e, S.¥) = (2.P(e, Vo P(*y). (57)

Now, (55) shows that in the limit as ¢ — 0
the right-hand side of (57) can be replaced by
(22 P(e)e, Q7 P()*Y):

lim (¢, S.¢) = lim (2iP(e)p, QP(9*¥)
e—+0 «—0
= lim (¢, P(*Q*QP()*Y).  (58)
=0
However, the intertwining relations for the

Coulomb-Mgller wave-matrices®
Hn n't = Q*EHUI (59)

with H, and H, given by (33) and (34), imply
that the free Hamiltonian and, therefore, also P(e)*
commute with the operator Q;*Q7, so we can re-
write (58) as

lim (¢, 8.¢) = lim (P(P()p, 2*2Y) = 0, (60)

since it is easy to see that [P(¢)]* converges weakly
to zero as well as P(e).

Now since by the work of Sec. I the operators
Q% and S, are unitary, they cannot have strong
limits since we have just seen that they all converge
weakly to zero. This completes the proof of the
theorem.

Theorem 7 shows that the program of adiabatic
switching outlined in the introduction breaks down
in the case of Coulomb potentials. The weak con-
vergence to zero of 2% and S, makes these operators
useless in defining a reasonable S-matrix for the
theory.

To round out the discussion of adiabatic switch-
ing, we comment briefly on the prescription of
Gell-Mann and Goldberger."® This prescription
would define a switched Mgller wave-matrix @}/’
for the Coulomb potential according to

Q0 = f " e M (61)

o
But €}/ (and likewise the corresponding ©;*/) con-
verges weakly to zero as ¢ — 0 because of the
previously mentioned weak convergence to zero of
et et g5 t — 4o [Eq. (35)ff]. Using slightly

§ T. F. Jordan, J. Math. Phys. 3, 414 (1962).
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more refined techniques, it is also possible to show
that the switched S-matrix (Q7/)*Q7”’ converges
weakly to zero in this case. Thus the Goldberger-
Gell-Mann technique also breaks down for the
Coulomb potential.

It is not hard to see that the undesirable at-
tributes of the “switched” operators for the Coulomb
case are due to the long range of the Coulomb po-
tential. This long range produces’ an anomalous
asymptotic time dependence for wave packets
moving under the influence of a Coulomb potential.
This anomalous time dependence is given by a change
of phase exp [—1 e(t)(me.e./k) log (2K°|t]/m)] of
the wave packet in momentum space. Instead of
“erasing” the asymptotic effects of this phase,
the switching procedures discussed reproduce a
part of it, and in the limit as e — 0, they essentially
produce the phase with |f| becoming infinite, thus
causing weak convergence to zero. We might say
that the switching procedures indicate too faithfully
the distortion caused by the long range of the
potential.

The above results on the Coulomb potential
make it seem doubtful that adiabatic switching
procedures can be used to extend nonrelativistic
scattering theory in other cases in which the ordinary
Mgller wave matrices are not defined, i.e., cdses
in which e'"‘e¢ "' does not converge. The Coulomb
potential comes quite close to satisfying condition
(B) at the beginning of Sec. II, which guarantees
the success of the adiabatic switching method.
This potential represents one of the weakest imagin-
able violations of condition (B), and it is dis-
heartening to think that already for this case,
which is also a case of great physical interest, the
method breaks down. This makes it seem unlikely
that the method will work for potentials which
represent worse departures from conditions (A) or
(B). In summary, the adiabatie switching method
is perfectly justified for a large class of potentials
for which Q* exists, but the future of attempts to
use it to extend the ordinary theory looks dim.

APPENDIX: CONSTRUCTION AND PROPERTIES
OF U, ()

Construction of U, (f)

The construction of the operator U,(t) for ¢ > 0
proceeds as follows: Consider a partition A of the
interval (0, #):

Oztn<t1<"‘<!n=ta

o <1 < G=1---n). (A1)

SWITCHING
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Let
X; = exp [(4 — #-)(—iH))], (A2)
Hy=H(r), (@G=1--n).
U(4) = X, Xo1 -+ Xu (A3)

Kato’s proof shows that as the mesh A =
max; (&; — t;,-,) tends to zero, U(A) converges
strongly to the desired U,(f). However, in the
present case, 1/ ,(t) satisfies Kato’s hypotheses as
well as —2H ,(1); and Kato’s proof then shows that

Ua)* = XF -« X% (A4)
also converges strongly, and clearly it converges
to U*(t). But since

U(a)*U(a) = 1 = U(Q)U(4)*, (A5)

we have

U.)*U() =1 = U)U.(1)*, (A6)

Il

so that U,(t) is unitary. The construction for ¢t < 0
is handled similarly.

Boundedness of ||V U,(f) ol|

We now proceed to show that the expression
||[VU.(t)¢|| is bounded in ¢ for ¢ € D(H,), as stated
in the text. First, after a little juggling of (13) and
use of the triangle inequality we find that if
¢ & D(H,), then

IVell < a [[HDell + b [lell, (A7)

where a and b are independent of ¢, ¢ and ¢, and a
can be chosen as small as desired.
We also notice that by the triangle inequality

a [[HDell + b [lel]
< a||[Hop|| + a* [|[Vel| + b [le]|

< a(||Hop|| + ||VelD) + b llel] = M(@) (¢ > 0).
(A8)

Using the notation of (Al) to (A3) we now esti-
mate ||[VX,X,., -+ Xg|| for ¢ € D(H,). In doing
so, we shall repeatedly use (A7), (A8), the unitarity
of X;, the fact that H; = H,(r;) commutes with X,
and the triangle inequality, and may omit explicit
mention of some such steps. We also introduce the
notation

SR e S (A9)

d, = e
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and notice that
H, — H;,, =dV. (A10)

Lemma: 1f ¢ € D(H,), and
n > 2,then |[VX, -+ Xol| < II (ad + DMG.

In estimating ||[VX, --- X,¢|| we proceed by
induction on n: letting ¢ € D(H,) we first estimate

VXl < a ||H,X .||
+ b llell = a |[|[X\Hel| + b |le]|
= a |[Hwl|| + b |le]| < M(e) (A11)
and
VX Xip|| < a ||H.X:X,0||
+ b [[X:Xoo|| = a [[H.Xse|| + b [le]]
< al|[(H, — H)Xpl| + a [[HX:0|| + b [le]]
= ad, [|[VX.p|| + a ||Hiwl|| + b [l¢][. (A12)

Now using (Al11) on the first term and (A8) on
the second two terms, we find

VX X0|| < (ad, + 1)M(y). (A13)

We now assume that for some &k > 2
k-1
”VXka—l makie Xx‘Pll < I]; (ad; + I)Mf@) (A14)

and estimate

NVXirXs -+ Xigl| £ a [[HiniXisr -+ Xoo|
+ b || Xser -+ Xagl] = a ||Hean X -+ Xool|
+ bllell < a||(Hew — H)X, - -+ Xig|
+ a |[|HX, -+ - Xiel|
+ b [lel| = ad: ”VX& o Xogl|
+ a ||H Xy -+ Xigell + b [lel]. (A15)

Writing H, = H,_, + (H., — H,_,) and con-
tinuing in this manner, we get

HVXisr -+ Xagl| < ad, ||VX, ---
+ adiy ||VX,y - Xao||

+ o+ oady ||[VX.X 0|

+ ad, [|[VXip|| + a [[Hiel| + b |le]l.  (A16)

Using (A8) on the last two terms, (All) on the
third to last, and (A14) on the rest, we have

X:‘PH

JOHN DAY DOLLARD

“VXL'H Tt X:‘P”

< ad, 11 (ads + VM)

=]

+ ady T ads + DM
+ -+ + adi(ad, + 1)M (¢)
+ (ad + DM = [T @d + DME,  A17)

completing the proof of the lemma. To estimate
the size of []22} (a d, + 1), let

L = log II (ad: + 1)
~ S log (ad, + 1) < 3 ad,
=a "Z_: @ = ) = g™ —e ") < 2a.
(A18)
Thus
VX, -+ Xiel] < €M(o). (A19)

Notice that this result holds independent of the
number n of X,’s. Now take a sequence A, of
partitions such that U(4,) —,.. U.(f). We know
that U.(f)e € D(H,) since U,(t) maps D(H,) into
itself. Thus U.(t)e € D(V). We now have

[[VU(A)el| < e M(p)  (alls)
Ua)e — Udlbe

Ute € D(V)
and these conditions suffice to guarantee that

[[VU(el| < €*M(g). (A21)

(A20)

Our proof holds for all ¢ > 0, since we started
from the expressions (Al), (A2), (A3), which were
written for ¢ > 0. However it is easy to extend the
proof to ¢ < 0 by similar techniques.

Nole added in proof. Without going into details,
the author wishes to remark that the results proved
here can be extended without difficulty to cover
switching procedures in which ¢ *'*' is replaced by
another function having the same general behavior
as a function of ¢ and e.
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Some properties of crossing matrices are deduced which are independent of the particular symmetry
group from which the crossing matrices are derived. In particular, a factorization of any elastic
crossing matrix, analogous to the factorization of a rotation matrix in n dimensions is found, and the
connection between crossing and unitary matrices elucidated. In the special case of the crossing
matrix for elastic scattering of particles which transform as representations of SUs, as well as the
usual consistency requirement that each row should sum to unity, a new consistency requirement on
the elements in a given column is proved. As a byproduct of this work, a possibly new quadratic

identity for Racah coefficients is exhibited.

1. GENERAL PROPERTIES

N a dynamical theory the consequences of in-

variance under an internal symmetry group are
manifested in the crossing matrices which relate
invariant amplitudes in different channels. In this
paper some properties of crossing matrices are
derived which are independent of any specific sym-
metry group in the hope that better understanding
of the structure of crossing matrices may cast some
light on the question of the dynamical origin of
symmetries."'* Most of the results obtained apply
to crossing matrices for elastic scattering, where
the particles exchanged have the same total quan-
tum numbers (i.e., belong to the same representa-
tion of the internal symmetry group).

Specifically, if the s and « channels for a scattering
srocess are deseribed by the reactions

a+b—c+d, (1)
a+d—c+ b, 2

espectively, where particles a, b, ¢, and d trans-
orm as irreducible representations of an internal
ymmetry group, then the invariant S-matrix
lements in the w channel S,(7) are related to those
1 the ¢ chanunel, denoted by S,(j) by the crossing
elation

8.(1) = C38.(5), 3)

‘here 7 labels irreducible representations in the
ecomposition of the Kronecker products of the
presentations to which particles @ and b belong,
nd j denotes the representations in the decom-
osition of the product of the representations as-

! E. P. Wigner, Phys. Today 17, 34 (1064).
*A. W. Martin and W. D. MeGlinn, Phys. Rev. 13
19%515) (1964). See also J. Rothleitner, Z. Physik 177, 28

sociated with particles ¢ and d. The assumption
of elastic scattering with the exchange of similar
particles means that particles ¢ and ¢ belong to
the same irreducible representation of the under-
lying symmetry group, while particles b and d also
transform according to another irreducible repre-
sentation (possibly the same). This representation
is also restricted to be self-conjugate. Then the
fundamental properties of the elastic crossing

matrix are
Z Cii =1,
i
E C.‘,'C,'k - aiky
i

with C;; real.

(The superscript ws denoting that the matrix
connects the s and « channel amplitudes has been
dropped for notational convenience.) These proper-
ties are proved” from the basic requirement that
the matrix CT transforms projection operators for
the irreducible representations in the Kronecker
product decomposition in the u channel into pro-
jection operators in the s channel.

Equation (4) is an expression of the complete-
ness of the set of projection operators, and has the
consequence that the same crossing matrix relates
S-matrix elements as transition amplitudes. The
second property (5) is a statement that two succes-
sive elastic crossings restore the status quo. Taking
(4) and (5) as defining relations, the following
lemmas are easily verified.

Lemma I1: If A and C are, respectively, n X n
and m X m elastic crossing matrices, then the
direct product

A®C

is an mn X mn elastic crossing matrix.

811



812

Lemma 2: If A and C are elastic crossing matrices
of the same dimension, then so is

AC A

Equation (5) implies that the eigenvalues of an
elastic crossing matrix C are =1, and +1 is always
an eigenvalue belonging to the eigenvector {1, 1---1}
by (4). Thus

TrC=n—r r=0,2 ¢ ,2n — 2), (6)

where n is the dimension of the matrix C. The
construction of Lemma 2 preserves the trace, be-
cause of the cyclic property of the latter, and pro-
vides a natural separation of crossing matrices
into equivalence classes distinguished by their
trace. The representations of the elements of period
two in the permutation group on n objects by n X n
matrices P}, form a basic set of crossing matrices
with non-negative trace. These matrices are mono-
mial (i.e., have only one element in each row and
column) and symmetric with unit elements. Clearly
Tr P} = number of diagonal elements. The matrices
P, with negative trace which obey the defining
laws (4) and (5) are seen to be obtained in terms
of the matrices P! by

P, = (2/n)B — P, @)

where B;; = 1forallz,j = 1 --- n. These remarks,
lead to the following property of factorization.

Theorem I: Every elastic n X n crossing matrix
C' may be factored as follows:

C=A,4, - A}-(n—nP:Aln(-—n e A,A, (8)

where there are 4n(n — 1) factors both before and
after the matrix P}, a member of the basic set
referred to above chosen with trace = Tr C. A
typical matrix 4, in the product is defined as follows:

Apei = 8, t7#k, j£1;
A=A =0 j#Ek
A = —A,u = a,; 9)
A =1 — a.;
A, =1+ a,.
The proof of this result is straightforward, since
a L= aJ
l14+a —a

is the most general 2 X 2 elastic crossing matrix
(apart from the identity),” it is clear that every
factor in (8) is a erossing matrix. Hence by Lemma

D. B. FAIRLIE

5 the right-hand side of (8) is a crossing matrix,
with trace = Tr P% = Tr C by construction. Since
there are in(n — 1) distinct matrices A,, corre-
sponding to the different possible choices of k and
I, it remains the show that C' depends upon at most
in(n — 1) parameters. It is sufficient to show this
for a matrix whose elements differ infinitesimally
from those of a P, as the elements of an arbitrary
C may be regarded each as the sum of a power
series in some arbitrary expansion parameter A,
the requirement that the conditions (4) and (5) be
satisfied to each order in A\ serves to determine
the coefficients of A™ in terms of the elements linearly
dependent on A by an iterative procedure. First,
for a crossing matrix C = P}, + Ci;, with C;
infinitesimal, the condition (5) to first order reads

P:HCH + C”P:H =0 (all i, k). (10)
Since P} is monomial with unit elements, this gives
Cu+Cu=0, (11)

where the indices k and [ are specified by the choice
of 7 and k, respectively.

Let D denote the set of indices ¢, j for which

&= 28;. If there are m indices in D then Tr C=m.
On the account of the symmetry property of Py,
the same Eq. (11) arises from the &, lth component
of (10) as from the 7, kth component. Hence the
number of independent equations is

}n — m)' + m(n — m)
+ m* = §(n — m)(n + m) + m’.
Also
¢, =0 (alla,d& D). (12)

The condition that the rows of C all sum to unity
is automatically satisfied by (11) for rows associ-
ated with diagonal elements of P}, and again by
(11) this condition yields $(n — m) independent
equations for the remaining rows. Hence the number
of independent parameters in C' is

n' — m' — }n — m)(n + m) — §(n — m)
=3in—mnd+m—1)
= }[n(n — 1) — m(m — 1)].

In the second case when C has negative trace
the equations analogous to (11) to be satisfied by
the infinitesimal quantities C;; in the expression
C = P, + Cy; = 2/n)B,; — Py + Ci; are

aiyf

72‘1 > Cu—Cuw—Cu=0 (alli), (13)
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where h and [ bear the same relationship to ¢ and
k as in the previous case. Write

Cor = Cly + 2. C,; (alld).

Then, from (13), C/; satisfies the same Eq. (11) as
in the previous calculation, together with the ad-
ditional restrictions

Z C:f = Os
I 4F

Equation (11) automatically ensures that the
column sums are zero for &, I in D and provides
i}(n — m) linearly independent equations for the
remaining column sums. Hence the number of inde-
pendent parameters C/; is 3(n — m)(n + m — 2).
From Eq. (13) for k, I not in D

ECrk — ECu

and there is no requirement for >, C,, with k in
S except

(15)

0. (16)

(17)

>Ch=0 (allr, k).
rk

Hence the number of additional parameters 2. C,;
in (16) is m — 1 4+ 3(n — m). Hence the total
number of parameters C,; is

in—mn+m—2)4+3n—m)+m—1
= inn — 1) — 3(m — L)(m — 2).

Thus the total number of independent parameters
in any C which differs infinitesimally from one of
the basic crossing matrices P;, and hence for any
C cannot exceed jn(n — 1), justifying the asser-
tion of Theorem I. When P! has m diagonal ele-
ments, then all matrices 4, with nonzero off-diagonal
elements only in the set ¢, § € D, commute with
P7. There are jm(m — 1) such matrices, and they
may be supposed arranged in the product S in
proximity to P}. Hence the number of independent
parameters in the product is jn(n—1)—3im(m—1)
in agreement with the above calculation. This
factorization into essentially 2 X 2 crossing matrices
is analogous to the factorization of an n X n or-
thogonal matrix.

It turns out that another property additional to
(4) and (5) is required to characterize crossing
matrices occurring physically. To see this another
decomposition of a general elastic crossing matrix is
required,
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Lemma 3: Every elastic crossing matrix ¢’ may be
expressed as

C = K7'0K, (18)

where O is both symmetric and orthogonal, K is
symmetric, and »; K,; is an eigenvector of O be-
longing to an eigenvalue +1.

Proof. Any matrix satisfying (5) may be written
as NAN™', where N is an arbitrary real nonsingular
matrix and A is diagonal with elements either +1.
Now such a matrix N may be written as K70,
where K~' is symmetric and O, is orthogonal.®
Hence K'0,A0TK satisfies (5). Now 0,A07 is
both orthogonal and symmetric by construction.
The full matrix will satisfy (4) also if K is restricted
so that D ; K,; is an eigenvector of O corresponding
to unit eigenvalue. The lemma forms the basis of
the second main result.

Theorem II: All elastic crossing matrices which
occur physically may be written in the form

Yol A
-}
" (19)
IS v
with O orthogonal and symmetric, and the column
vector {\, --- M} an eigenvector of O with eigen-
value 1.

The proof is immediate. Squaring the total ampli-
tude D¢ PS.(6) = >.; P:S.(j), where P% and P}
are projection operators in the U and S channels,
the following equation is obtained:

NSO = X N 18O (20)

Since
P> P;o= Nby, (21

where the sum is over all intermediate states, and
\: represents a sum over the conserved quantum
numbers in the group representation labeled by <.
Now in terms of the crossing relation (18) an alter-
native expression for (20) may be obtained, i.e.,

SO 8.3G) = SHHKT,S.0). (22)

The equivalence of (20) and (22) requires K3; be
diagonal with positive eigenvalues. Hence K.; is
diagonal with diagonal elements MA .o b say.
(K is symmetric and may be written as K;; =

2 (3. Birkhoff and 8. Maclane, A Survey of Modern Algebra
(The Maemillan Company, New York, 1963), p. 278,
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0, M0, with 0, orthogonal since \; # 1 in gen-
eral, and K%, diagonal implies 0, = identity.) In
SU,, if 7 is the total isotopic spin of an intermediate
state, A; is the number of distinct values of the
isotopie spin, i.e., A; = 2z + 1. This interpretation
requires that A\; be integral and positive. (This
would appear to be a more fruitful approach to
the problem of restricting the allowable 2 X 2
crossing matrices to those corresponding to scatter-
ing of a particle of integral or half-integral isotopic
spin off another of isotopic spin %, than the dy-
namical approach of Martin and McGlinn.”)

It does not appear from a simple parameter
count that Theorem II follows simply from (4) and
(5) alone, but provides a genuine additional re-
striction. The number of parameters required to
construet an n X n symmetric orthogonal matrix
of the form é;n — § 4+ 1 + S;;, with S;; sym-
metric, is n2(n — 2)/4 (neven) and (n 4 1)(n — 1) /4
(n odd). The trace of such a matrix is zero (n even)
or 1 (n odd). Ience the number of independent
eigenvectors with eigenvalue +1 is in (n even)
or 3(n + 1) (n odd). Thus the total number of
parameters in a matrix € constructed by (19) is
in® (n even) or 1(n + 1)° (n odd). For general n
these totals are much less than the in(n — 1)
parameters permitted to a matrix with minimum
positive trace by (4) and (5).

2. EXAMPLES

The 3 X 3 crossing matrix enjoys some unique
properties. There are three classes; the identity,
corresponding to trace +3, the matrix

g 5
g (1—a)(1+a—c) (1—a)(b—a—1)
13~ b—ec b—c
_b(l+a—c) b(b—a—1)
b 1 b—c b—e¢ 23)
_e(l+a—ec) 1__c:(b—a—l)
L b—e b—c
with b # ¢, with trace +1, and the matrix
a—b—c 2b 2¢
1
e 2a b—a—e 2c (24)
2a 2b c—a—b

with trace —1. All these matrices have the property
that they may be represented as in (19). Also in
(23), if @ + b + ¢ = 1, the other two columns
have this property too. The anticommutator of
any 2 X 2 crossing matrices or of any two 3 X 3
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matrices of the form (24) is twice the identity.
This may be verified most easily by observing
that half the sum of any two such matrices is also a
crossing matrix and thus has unit square.

Isotopic Spin Crossing Matrices

For the specific case of invariance under SU,
there is a well-known expression for the crossing
matrix for reaction (1) in terms of Racah co-
efficients,*””

JU o= (=102 + D)W (abde; ji), (25)

where a, b, ¢, and d denote the isospin of the re-
spective particles.

In the case of elastic crossing ¢ = ¢, b = d, the
proofs that the matrix (26) has unit square and
admits a representation as in Theorem II are well
known.”"* The row-sum property (4)

I =1 (allg) (26)
i
may be verified by setting a = ¢, b = d in-the
general sum rule’
2 (2§ + 1(—=1)"*"""W(abdc; ji) W (badc; jf)
= W(aifb; de),  (27)

and choosing the free parameter f in (28) equal to
zero. Rose and Yang® have shown that for such an
clastic crossing matrix Tr J = 0 or 1 (n even or
odd). An additional property of the matrix (25)
for elastic scattering concerns the column sums.

Theorem IIT: If J is an n X n elastic crossing
matrix for the group SU,, the column sums satisfy

'Z (—l)iJ,-,- - (_l)iﬂn—l)’ (28)

ie., the matrix (—1)"J,7(—1)""" also satisfies
(4) and (). The proof depends upon another sum
rule for Racah coefficients’;

2 (27 + DW(ajia; bb)W(cjdb; ea) W (ajfc; be)

= W(aied; bf) W (bicd; af).  (29)

Using symmetry properties and summing over t,
the equation

4 F. J. Dyson, Phys. Rev. 100, 344 (1955).

5 8. Mandelstam, J. E. Paum, R. F. Peierls, and A. Q.
S’erer Ann. Pl]}'\ (N Y.) 18, 198 (1962).

¢ C. N. Yang, J. Math. Phys. 4, 52 (1963).

7P. A. Carruthers and J. l)’ I\trsch, Ann. Phys. (N. Y.)
33, 1 (1965). This paper contains a careful discussion of
pha.se factors.

8 M. I2. Rose and C. N. Yang, J. Math. Phys. 3, 106 (1962).

* M. B. Rose, Elementary Theory of Angular Momentum
(John Wiley & Sons, Inc., New York, 1957), p. 114.
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> 2 (@ + D=1 W(abba; fi)}
W (cjdb; ea) W (ajfe; be)

= 2 W(aied; bf)W(bicd; af)  (30)

results.

Specializing to the case where ¢ = fand ¢ = d,
and using symmetry properties, Eq. (31) takes
the form

Z: V,:‘X',-" = Z Xr'tc: (31)

with

Vi = 2 (2i + D(—1)""""*"W(abba; fi)

! (32)

X;.r = W(ajec; be) W(bjcc; ae).
Now the set of Eqgs. (32) regarded as a set linear
inhomogeneous set for the unknowns V; is over-
determined: an evident solution however is V;, = 1;
thus it is unique and hence Theorem 111 is proved.
This solution of (32) checks with the sum rule (28)
and also with the orthogonality requirements for W
coefficients. As a corollary, from (31) the general
identity

2 W(bjde; ae)W (ajfe; be)
= Z W(aied; bf)W(biced; af)

and

(33)

may be deduced. This result is unfamiliar to the
present writer, but may be already known.

A result analogous to Theorem III is known for
the crossing matrices appropriate to the scattering
of particles transforming according to the adjoint
representation of SU,;"® it would appear from this
that Theorem III is capable of generalization to
other symmetry groups. Along with the row-sum
property (26) it provides a convenient check on
elastic isospin crossing matrix calculations. The
2 X 2 isospin crossing matrix for scattering of an
isospin 3-particle by one of isospin j is obtained
from the general 2 X 2 matrix by choosing the
parameter a as 1/(2j 4+ 1);* the crossing matrix for
the scattering of a particle of isospin 1 off one of

10 D. E. Neville, Phys. Rev. 132, 844 (1963).
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1sospin j is

(_@i=DG+D 1 2j+3
(2j41)j i Py
7= Gl 2j+3
2j—1 L __2i+3)
23+1 j+1 (27"'1)(}*}‘1)‘

(34)

The matrix (34) clearly satisfies the consistency
requirement. In fact its form is determined by
Eqgs. (23), (19), and (28).

Inelastic crossing matrices

Foldy and Peierls'' have shown that a general
inelastic erossing matrix, must have the form

Ci = F:g{)”)\?, (35)

where u; and \; are the dimensions of the irreducible
representations of the symmetry group in the ¢
and u channels, respectively, and 0 is an orthogonal
matrix. Their proof was for the case of isotopic
spin symmetry, but generalizes at once to crossing
under an arbitrary symmetry group. As a step
towards the further characterization of C™ in
terms of C** the following property may be noted:

The rows of C** are left eigenvectors of C"'.

This property is a consequence of the fact that the
result of crossing first from the s channel to the u
channel and thence to the ¢ channel is equivalent
to crossing directly from the s to the ¢ channel as
" and C** differ only by real phase factors, since
three successive crossings, from the s to the wu,
to the {, and then back to the s channel, has the
effect of conjugating all the particles. It is already
known for the case of isotopic spin® and in that
context is a consequence of Eq. (27). Some further
understanding of the structure of inelastic crossing
matrices may come from the extension of results
(26) and (28) to inelastic processes.

1L, L. Foldy and R. F. Peierls, Phys. Rev. 130, 1585
(1963). See also D. Amati, L. L. Foldy, A. Stanghellini, and
L. Van Hove, Nuovo Cimento 320, 1685 (1964); and D. C.
Peaslee, Phys. Rev. 136, B1807 (1964).
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Special representations of arbitrary noncompact rotation groups labeled by one independent
Casimir operator are considered. The explicit construction of the corresponding generalized spherical
functions is given and the properties of these representations are discussed in detail.

1. INTRODUCTION

ECENTLY, the study of noncompact groups of
higher symmetries has become important due
to applications in the physics of elementary particles.
It turns out that most of these groups either contain
many noncompact rotational groups L(p, ¢q) or ap-
pear to be subgroups of some other L(p, ¢). For in-
stance, the group U(6, 6), which has been cur-
rently used in the last time, contains L(6, 1), --- ,
L(6, 6) as its subgroups and itself is a subgroup of
L(12, 12). So, the investigation of the noncompact
rotation groups is of great interest.'

However, the theory of representations of these
groups has been worked out mainly from the analytic
point of view, which is of little use for the theory
of elementary particles. The reason is that physicists
wish to know the eigenvalues of the maximal set of
commuting operators in the corresponding Lie alge-
bra and how a given representation of the considered
group can be decomposed into representations of
its compact or noncompact subgroups. On the other
hand, in the cases of the rotational or the Lorentz
group, we know for physical applications how useful
it is to formulate the problem in terms of spherical
functions.” Therefore it seems worthwhile to work
out the theory of representations of the noncompact
rotation groups based on the theory of generalized
spherical funetions.

In Sec. 2 we give a general prescription for the
construction of polar coordinate systems in homo-
geneous spaces having an arbitrary number of di-

* Institute of Physics of the Czechoslovak Academy of
Sciences, Prague, Czechoslovakia.

1 On leave of absence from Institute of Physics of the
Czechoslovak Academy of Sciences, Prague, Czechoslovakia.

1 On leave of absence from Institute of Nuclear Research,
Warsaw, Poland.

1J. Dixmier, Bull. Soc. Math. France 89, 9 (1961). A.
Kihlberg, “On the Unitar?r Representations of a Class of
Pseudo-orthogonal Groups,” Preprint, Gothenburg, 1965.

* A. Z. Dolginov and A. N. Moskalev, Zh. Eksperim. i
Teor. Fiz. 37, 1697 (1959) [English transl.: Soviet Phys.—
JETP 10, 1202 (1960); A. Z. Dolginov, 1bid. 30, 746 (1956)
[English transl.: 7bid. 3, 580 (1956)].

mensions and invariant under the group L(p, g¢).
We derive also the differential equation for the
generalized spherical functions. In Sec. 3 we express
its solution in terms of conical and spherical
functions.

The special case of the groups of the Lorentz typeis
studied in Sec. 4. (By a group of the Lorentz type
we mean a set of transformations which conserve
the form —z? — 22 — —22 + 22, = R%)
Finally, in Sec. 5 we discuss the properties and
physical meaning of the continuous unitary rep-
resentations of L(p, ¢) thus obtained, and some re-
lated problems.

2. CONSTRUCTION OF POLAR COORDINATE
SYSTEMS

Let us consider a homogeneous space X,_, set
up as the following invariant quadratic form:

xi + oz + - +x:_m:+l_$:+2_
_x:ﬂ:Rz: Pi= 12 = » 50
q=0,1;"‘:ﬂ“‘?;iﬂ+q=n; (1)

where z;, -+- , ,., are the Cartesian coordinates
in the n-dimensional Minkowski space M,. We de-
note by L(p, ¢} the noncompact rotation group which
conserves this form.

It is known in the cases of L(3, 0) and L(1, 3),
there exist 11 and 34 different orthogonal coordinate
systems in E; and M,, respectively.® Nevertheless
only a few of them are useful in physical applications.
Analogously, only a suitable choice of the coordinate
system in M, allows us to construct a complete set
of orthogonal functions on X,_; to be the set of
spherical functions, which are preferable from the
physical point of view. In our case we shall con-
struet the coordinate system in X-space by general-
izing a method used by Louck and Granzow for
compact homogeneous spaces.* Namely, we shall

3 M. P. Olevski, Mat. Sborn. 27, 379 (1950).

4 J. D. Louck, J. Mol. Spectr. 4, 298 (1960). K. D. Granzow,
J. Math. Phys. 5, 1474 (1964).
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assume that the polar coordinate system in n-dimen-
sional space is known and then we shall derive a
general rule for determining coordinates in the space
of n + 1 dimensions.

In the general case of a compact or noncompact
X, we must distinguish several possibilities. Let
the metric of the (n — 1)-dimensional homogeneous
space X.., be-determined by the form .(1) with
given p [number of pluses in (1)], ¢ [number of
minuses in (1)],  + ¢ = n, and the metric of the
n-dimensional homogeneous space X, by p’, ¢’ (" +
¢ = n -+ 1). Then we consider the following cases:
g =0.

L p=mn, ¢=0; p’=n+1,

This case was solved by Granzow." We shall
denote it by C* to express the fact that X,_, is a
compact space and the new coordinate z,., of
X, appears in (1) with a plus sign.

II. p=n, ¢g=0; p'=n, ¢ =1/ (theC -type).

L 0<p<ng=n—p;p'=p ¢ =q+1
(the N™-type because X, , is noncompact).

All the possible rotational groups are covered by
these three cases.

Let us suppose now that we have constructed the
polar coordinate system in the n-dimensional flat
space M,,

& =RfO), k=1,
(0‘: ‘92: "}"_])-

2

'y

where® 0 =
We have

g“(M,.)J"(@)-f'(E)) =1, (3)

where g;,(M,) is the metric tensor in the flat space
M,. This parametrization induces the following form
of the metric tensor g, (X,-,) in the homogeneous
space X, _,:

9f(®) 31(®),

K -\rnf = & Anfn
gl Y, 9x:(M,) s od

(4)

Now the prescription for obtaining our polar
coordinates in n -+ 1 dimensions is different for
different types of the above-mentioned transforma-
tions, Let us treat them separately.

8 Coordinates in flal spaces are labeled by Latin indices,
namely by k, I, m, --- , if they run from 1 to n and r», s,
¢, +-- if they run from 1 to (n + 1). Coordinates in homo-
geneous spaces are labeled by Greek indices, similarly, by
K A, p, --- if they run from 1 ton — 1 and p, o, 7, +-+ f
they run from 1 to n. If no other indication is given, we
gt?iploy the Einstein summation convention over dummy
indices.
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I. The C* Case

The polar coordinate system in E,,, is defined by
the transformation

¥ = Rsind™-f(©®) k=1,---,n; ¢ &(0,2n)

2™ =Reoso” 9 €{0,m) 1=2,--+,n, (5)
ie.,

" = R (0, ") r=1,--+,n-41,
where
(0, 9" = Jsin:?"-f"(@)) if r=k=1,--,n, (6)

cos 3" if r=n+41.

The metric tensor g¢,,(X,) of the corresponding
homogeneous space X, has the form

g.)‘(d ,‘) = Sin2 ‘l}’l' g.;(X,.-:.),

Q)
Gns(Xa) = By
[ga(Xa-1) 1s independent of #7].
II. The C- Case
In this case the new polar coordinates are
z* = Recosho™-f'(®), k=1, --,n;
2™t = Rsinhd'i‘, ®
S EW27), E0,x, i=1---,n—1,
3 E (-, =),
Le.,
o =Rf©,9) r=1,--,n+1 (9
where
@, 9" = Jeosho™-f(®©) if r=k=1,---,n,

lsinh 9" if r=n-+1.

The corresponding metric tensor g,,(X,) is given
by

ga(X,) = cosh® 9" g (X.-y),
gnp(Xn) = '-5,.“

where g.,(X,-,) is independent of §".

(10)

III. The N- Case

The same transformation as in the case II holds
also in the N case, the only difference being in the
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range of variation of the coordinates. In the N case
we have

d' € (0, 2x)

Ve i=2 - ,p—1
¥ E (-, ®) j
VY E(-,w) 1=1,2,--+,n for p=1.

for p>1, (11)

=P, ", R

Using the above-mentioned formulas for metric ten-
sors ¢,.(X,), we can construct an invariant operator
A(X,) on the homogencous space X,

AKX = loX1 35, G 2, (12)

where

Q(X,) = idCt (gn(‘xu))l'

This operator is the lowest-order Casimir operator
of the group L(p’, ¢’), which leaves X, invariant.
Due to the properties (7) and (10) of the metric
tensor ¢,,(X,) the operator A(X,) always decom-
poses into two parts. Namely, in the case € we
obtain

R N ey A(X,-.)
AX,) = o gn g ST 9 30 Temrerr (13
and in both ¢~ and N~
A(X,)
-1 9 a1 g 9, AKX,
T cosh"' 9" 99" eosl™" & A" + cosh® " (14)

The eigenvalues (—ea,_,) of A(X,_,) and eigenvalues
(—a,) of A(X,) are in all cases of the form

ah"l = In-—l(ln-l +n i 2); @, = I-(lu +'n — l). (15)

However, the range of I, depends essentially on the
circumstance whether the corresponding group is
compact or noncompact. In the case of a compact
group, the corresponding [, are nonnegative integers,
whereas in the case of a noncompact one they have,
in addition, the form

= —3(k — 1) — i\, (16)

where A, is an arbitrary real number and k is the
number of dimensions of X,.°

In the present paper, we shall restrict ourselves
to the continuous spectra of the A operators of the
noncompact L(p, q) group as well as its noncompact
subgroups.

¢ Assuming the eigenvalues of the A(X,) operator in the
form (15) and (16) we obtain the complete spectrum. Sce
R. Raezka, N. Limié, and J. Niederle, ICTP preprint 1C/66/2,
Trieste; N. Limié, J. Niederle, and R, Raczka, ICTP pre-
print, 1C/66/18, Trieste.

NIEDERLE AND R. RACZKA

3. SOLUTIONS OF DIFFERENTIAL EQUATIONS
FOR GENERALIZED SPHERICAL FUNCTIONS
Since the operator A(X,) decomposes into two
parts as given in Eqgs. (13) and (14) its eigenfunction
¥(0O, 4") belonging to the eigenvalue (—a,) can
be taken as a product of two functions

¥(0, d") = Y(O) ("), (17)
where ¢(0), 0 = (¢', ¢°, .-+, 9"7") is the eigenfunc-
tion of A(X,_,) with eigenvalue (—«,_;). Thus the
function ¢(#") must fulfill the equation

S d -
sin"”' 9" - -t

do" ~ sin® a')“’("")
= —ap(9”)  (18)

in the compact case (C'"), while in the noncompact
one (C” or N7)

1
(s.in"‘x 4" dy”

_____1__d. nei gn A - _‘,!L‘T.L_.) n
(cosh"*‘ 7 g N ¥ 35 T Cost® 97/90)

= —a(®?). (19
The solutions of these equations are the following:

1. C'* case

(a) n-even

e(@") = (sin"* 9P A M (eos 97 5 (23)
(b) m-odd
n 1 @) = (i o) IMEESETE) oy

ilg0t

n=1 @) =ce
Here, for both cases (a), (b), I, > |l._,| and both are
nonnegative integers except for [, which is an
integer.

II. C" case
99(0’.) = (COSh”—l 0')_!1’1::,4(..-3)/2(tﬂ.llh 1}“).

where 1,_, are nonnegative integers, A, are real num-
bers.

III. N~ case
@) = (cosh™™' 9")7*P, .\, (tanh 8",

where A, and X\,_, are both real numbers.

Functions P}, ;,(z) are the conical functions (see,
e.g., Bateman”) and the functions II;(d) are the
spherical orthonormalized functions IT;(n, ¢) intro-
duced by Fock.”

7 H. B. Bateman in Higher Transcendental Funclions, edited
IQY A. Erdélyi (McGraw-Hill Book Company, Inec., New

ork, 1953), Vol. I, p. 174; V. A. Fock, Z. Physik 98, 145
(1935).

(25)

(26)
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Thus the eigenfunctions ¥(0©, #") of the Casimir operator A(X,) of an arbitrary group L(p’, ¢')
can be expressed in terms of the conical and spherical functions in the following way

(a) p-even

(l[, lﬂr IS) e

) ln—za ln—l: }\m >‘p+1: e

) )\u-lr A iﬂl:ﬂz.v e tdrl)

= ¢ 7" Pli(cos ¢°) I;5.,(8°) -+ (sin®™* 0° %) PTi 0 i (cos 077

(@it 97 I A ) (cosh ™ 97) PR, 4 s a(tanh 0°) (cosh? 97*1)

(b) p-odd
(ll, lz: lar ¥

) 19—21 lﬂ-h )\w )\xﬂ-lr rae

-Pi’;’:};,(ta.nh #**") -+« (cosh™?* z”"ﬁ"l’i";"{.—k,ﬁ,(tanh #" ") (cosh™™’ z?")'*Pi’;X an(tanh 87%);  (27)
s M1y Aa | ‘?11 '}zt ] '3“)
= """ Pii(cos 0°) T3, (87) - -+ (sin”° 9777 T TN 007Y)
(sin®™® 9> AP TR 2 cos 97 ) (cosh? ! 97) AP ooy o(tanh o)
-(cosh? 9”* )PP, (tanh 97*Y) - - - (cosh™? 9" %)}
i’;‘J Au_.(tanh 8" ")(cosh™* z?")"P_’;Hh_,(tanh 9. (28)
—a] — 2 — s — 23422, = R (30)

Since the set of Casimir operators A(X,), --- ,
A(X,) forms a complete set of commuting Hermitian
operators the set of their common eigenfunetions is a
complete set of orthogonal normalizable functions
with proper as well as improper norm. It means that
every square-integrable function on X, can be ex-
panded in terms of (27) or (28) and of the eigen-
functions related to the discrete spectrum.

Our continuous unitary representations of the
L(p, ¢ + 1) group are realized in the Hilbert space
of generalized Fourier tranforms®

k= [ W,

Y Xn

0
-1(8, 99 [g(X.))} d6 do",

where ;1.0 (6,9") is a function given by (27) or

(28) and f(8, ¢#") € CG(X,). The scalar product in
this Hilbert space is defined by

DR [ WRRR W, Zhees O dhess
Li,oen dp—s

(29)

and the norm is finite.
4. THE GROUPS OF THE LORENTZ TYPE

The coordinate systems (5) and (8) give a com-
plete description of any homogeneous space X in-
variant under the group L(p, ¢). However, in phys-
ical applications it is desirable to have as many
discrete quantum numbers as possible. For this
reason if p < ¢ it is convenient to introduce another
parametrization of the X, Let us consider as an
example the groups of the Lorentz type L(1, n),
which conserve the form

If we apply to these groups the procedure used in
the N~ case we get all n quantum numbers con-
tinuous. We shall develop now a procedure which
yields eigenfunctions of A(X,) labeled by n — 1
discrete quantum numbers and only one continuous.

Let us start from a homogeneous space X,_, with
an invariant form

x +ar+ -+ 2 =R (31)

Now, assuming that the polar coordinate system
of E, has been defined by the procedure used by us
in the C"case [Eq. (5)], we introduce the following
coordinate system in M, ,:

" = Rsinhd™-f'(©®) k=1, ---,n ¢ €(0,2r),

""" = R cosh & FEOD i=2 - ,n—1
#" € (0, @), 32)
i.e.,
2 = Rf(©,#) p=1-+,n+1 (33
(©,¢") =sinhd™f@®) if r=k=1,:--+,n,
= cosh o" if r=n+41.

The metrie tensor g,.(X,) of the corresponding homo-
geneous space X, has the form

galX,) =
I Xs) =

where g, (X,-1) is independent of "

—sinh® 9" ga(z.-1),

(34)
- anﬂ)
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Let us construct now the invariant operator A(X,)

on the homogeneous space according to the formulas
(12). We obtain

| K A()i..-u)

A(X) = mag ik 1" d9"  sinh’ ¢ - (35)
The spectrum of «,_, is discrete
-t = laeilas + 1 — 2) (36)
ley 2 Ly = -+ 2 |l;] 2 0 integer,
whereas «, is continuous
a, = L, +n—1), 37)

[, = —3n — 1) + i,
2. being arbitrary real.

The separation of variables (17) leads to the
following differential equation for ¢(d"):

Q1

sinh” ﬂ")‘pw )

= —a.p(¥")

— sinh"”

( 1 d
sinh" ™ ¢" dy" 19"
(38)

and its solution is

@™ = (sinb"* 9" Pt P (cosh 87).  (39)
The function ¥(©, ¢") has the form
¥(O, 9") = YO)p(d"), (40)

where (@) is the solution of the compact C° case
in the X,_, homogeneous space. For the case of the
Lorentz group L(1, 3) our result agrees with
Smorodinskil’s and Vilenkin’s paper.®

DISCUSSION

It was mentioned several times® that in the theory
of elementary particles the most important role is
played by the simplest representations of the non-
compact group, namely be those for which all ex-
cept one of the eigenvalues labeling Casimir opera-~
tors are independent. Just these representations
were constructed in this paper. It follows from the
fact that the infinite-dimensional Hilbert spaces 3¢
in which our continuous unitary representation
Ty e of the group L(p, q) acts, is fixed up by one
eigenvalue «,., of the Casimir operator A(X,_,)
(Sec. 2). The complete set of functions which span

8 N. Ya. Vilenkin and V. A. Smorodinskif, Zh. Eksperim.
i Teor. Fiz. 46, 1793 (1964) [English transl.: Soviet Phys.—

JETP 19, 120‘3 (1964)].

"A. O. Barut, Phys. Rev. 139, B1433 (1965). A. O.
Barut, P. Buchm and C. Fronsdal Preprint IC/65/34,
Trieste (1965). M. Gell-mann, Lecture at Trieste Seminar

(1965)

NIEDERLE

AND R. RACZKA

J¢ is determined by (p — 1) discrete parameters
L, -+, I,., and ¢ continuous ones A,, -+ , Ay,
Then two groups of quantum numbers are related
with the invariant operators of the compact and
noncompact subgroups, respectively. It is interesting,
that if the representation Ty, of L(p, ¢) is deter-
mined by one independent Casimir operator

i(n.e) L A(X —l)l Qitp.vl = ji(Q-lL(n.c))

1=2, -, + 9],
then the representations
TRER  G=2 o ypi=1, v g=1)
of the groups
Lp,g = 1), L(p, ¢ — 2), -+,
L(p, 0), L(p — 1,0), - -+, L(2, 0),

which appear in the decomposition of T, ., are
also determined by the conditions

QLi.iy = AX - and Qiu.n = ["(Qreiss)
§ = 2: T [%(?’.-'_ = 1}]‘

Roughly speaking, the representations of the non-
compact and compact subgroups L(z, j) are of the
same kind as the representations of the L(p, ¢).

The discrete quantum numbers, which character-
ize the representations T}};; of the subgroups
L(%, 7), are not independent. I'or the compact sub-
groups we have'®

p+1l

QLiper.on(@) = M, M

por=1

= Qi(n.o)(xp~l) + z_; M:u (41)

and since the last term is positive-definite we have

% B dun
If we take nonnegative integral values for [,
instead of I,.= —3%(n — 1) + 7\, for the eigenvalues

of A(X,) in the noncompact case, we obtain the in-
finite-dimensional unitary representations of the non-
compact groups except for the Lorentz type groups,
where we obtain the finite dimensional nonunitary
representations. These representations are discussed
in Ref. 6 and in the special case of the Lorentz group
by Dolginov.” If we take for I, a real number instead
of [, =— %(n — 1) + 1A, then the corresponding
functions are not orthogonal with respect to the
measure g'[[7.,d%° as was shown by Alcaras and
Ferreira'® in the case of the Lorentz group. But it

10 J. A. C. Alcaras and P. L. Ferreira, J. Math. Phys. 6,
578 (1965).
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does not mean that the set of eigenfunctions of
A(X,) does not form an orthogonal basis of the
Hilbert space, because we know that for the sup-
plementary series of irreducible unitary representa-
tions we have to use the double point measure."
This problem will be discussed elsewhere.

We would like to emphasize that our method may
be easily generalized and used to obtain other series
of irreducible unitary representations of the groups
considered. To achieve this we have to multiply the
sealar functions ¥(®, ¢#") obtained here by spinor
or tensor functions, similarly, as was done by
Dolginov and Moskalev® in the case of the Lorentz
group.

Recently, a number of noncompact symmetry
groups have been introduced into the theory of
elementary particles.'"” However, until now, mostly
finite-dimensional (i.e., nonunitary) representations
of these groups have been considered, whereas from
the physical point of view the unitary representations
are of the main interest because they conserve
probability. On the other hand, if we try to use the

n], M. Gel'fand, M. I. Graev, and N. Ya. Vilenkin,
Generalized Funclions, Vol. 5 (Academic Press Inc., New York,
in press).

12 R. Delbourgo, A. Salam, and J. Strathdee, Nuovo
Cimento 36, 689 (1965); T. Fulton and J. Wess, Phys. Letters
15, 177 (1965). P. Budini and C. Fronsdal, ibid. 14, 968
{1965). . Fronsdal, Proec. Roy. Soc. (London) A288, 98

1965). P. G. O. Freund, Phys. Rev. Letters 14, 803 (1965).
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unitary representations in the physics of elementary
particles, we have to solve the following problems'*:

(1) Determination of a set of quantum numbers
characterizing a physical supermultiplet in a given
unitary representation.

(ii) Decomposition of a tensor product of two
representations.

(iii) Determination of representations of compact
subgroups which occur in the decomposition of a
product of representations of the considered non-
compact group.

All these problems may be solved by our approach.
In particular, the problem (ii) may be reduced to
the decomposition of the product of two functions
of the type (27) and (28), and the solution of the
problem (iii) follows from the method we used for
the construction of the complete set of commuting
operators.
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We consider direct-product representations of the canonical commutation relations. An irreducible
representation is defined on each of the incomplete direct-product spaces (IDPS) of von Neumann,
We prove that two such representations are unitarily equivalent if and only if the corresponding
IDPS are weakly equivalent, for which simple analytic tests exist. The matrix elements of these
representations, coupled with a Friedrichs-Shapiro type of integral, fulfill group orthogonality
relations. This classification into unitary equivalence classes also applies to direct-product repre-
sentations of the canonical anticommutation relations.

1. INTRODUCTION

MONG all the representations of the canonical
commutation relations (CCR) for a scalar
boson field, those defined as product representations
have a certain simplicity that makes their study
attractive. From a physical point of view a product
representation may be associated with the ground
state of a hypothetical dynamical system composed
of countably many independent degrees of freedom,
each having a suitable but arbitrary Hamiltonian
expressed in the Schriodinger representation. Such
simple dynamical systems already require the use
of inequivalent representations of the CCR, the
existence of which was discovered in certain ex-
amples by Friedrichs’ and by Segal,” and popular-
ized in the special models of van Hove.® These
examples alone show the relevance of various in-
equivalent representations of the CCR and the
importance of choosing the right representation for
the right application. However, the specialized
techniques used earlier to test for equivalence were
unable to provide a simple, yet general, classifi-
cation of product representations into unitary
equivalence classes. In the present paper we extend
and apply two techniques introduced elsewhere'
(CRT V) to provide a simple and complete unitary
equivalence classification of product representations.

* Supported in A‘nart by National Science Foundation
Grant GP32).1 and the General Research Board of the
University of Maryland

1 K. O. Friedrichs, Mathematical Aspects of the Quantum
Theory of Fields (Interscience Publishers, Inc. New York,
9.')3

1. E. Segal, Mathematical Problems of Relativistic
Phys-zcs (American Mathematical Society, Providence,
Rhode Island, 1963) and additional references therein.
3 L. van Hove, Physica 18, 145 (1952).
+J. R. Klauder and J. McKenrm, J. Math. Phys. 6, 68
(1965), referred to hereafter as CRT V.

Section 2 is devoted to a rigorous definition of a
CCR representation in the Weyl form as a ray
representation of a group of unitary operators.
Section 3 deals with the construction of the in-
complete direet product spaces (IDPS) of von
Neumann® which provide a natural setting to
define produect representations. Our eanonical con-
struction assigns one irreducible representation to
each IDPS, and thus is a generalization of the con-
struction in CRT V where test function require-
ments limited the class of IDPS studied. In See. 4
we develop a kind of “group average,” an integral
of the Friedrichs-Shapiro type,® for arbitrary pairs
of matrix elements of the unitary group elements
from any two spaces, and established an analog
of the group orthogonality relations for compact
groups. In particular, we prove that the group
average for matrix elements from two different
representations vanishes identically if and only if
the representations are unitarily inequivalent. In
See. 5 an independent proof of the condition for
unitary inequivalence is given by explicitly con-
structing unitary invariant c-numbers, “tags,” for
every product representation. By establishing con-
ditions for the inequality of two such “tags” we
are able fo infer the unitary inequivalence of the
corresponding representations. (The discussion in
Sec. 5 does not draw on that in See. 4 and either
section may be read after Sec. 3.)

The essence of our principal result may be stated
in terms of the hypothetical dynamical systems
discussed above. Suppose two such dynamical

¢ J. von Neumann, Composito Math. 6, 1 {1938).

‘K. O, Fnednvhs and H. N. hh.q)nru “Integration of
Functionals,” Lecture Notes, New York Institute of Mathe-
matical Emnces, 1957, (.ahnp 1
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systems are given and the normalized ground states
pertaining to the nth degree of freedom are denoted
by x! and x3, respectively, both of which may be
arbitrary unit vectors. Then unitary equivalence
or inequivalence of the scalar field CCR for the
two systems is governed by whether the sum

p

n=1

160G, X — 1

converges or diverges, respectively. In the language
of von Neumann's theory, our result states that
canonical CCR representations defined on weakly
(in)equivalent IDPS are unitarily (in)equivalent.

A certain amount of confusion exists in the
literature regarding the interpretation and properties
of representations pertaining to an infinite number
of degrees of freedom. The convenient character-
ization of certain of such representations in tensor
product spaces has perhaps fostered the false im-
pression that nonseparable Hilbert spaces are
required, and that in certain models “the inter-
action maps every state out of Hilbert space.”
Firstly, field representations are completely defin-
able in separable Hilbert spaces as is illustrated
by the usual direct sum formulation of the Fock
representation. Secondly, any sequence of operators
all of whose matrix elements vanish in the limit
simply converges (weakly) to the zero operator.
This is just the set of circumstances that so often
prevails for the S matrix in the interaction repre-
sentation when a cutoff form factor is removed.
The vanishing of the matrix elements should not
be regarded as “mapping the states out of Hilbert
space,” but is indicative of an ill-chosen repre-
sentation of field operators, one for which the se-
quence of unitary S matrices with form factors
does not converge to a unitary operator as the form
factor is removed. It is for this reason that the
selection of the right CCR representation for the
application becomes crucial. But we must em-
phasize that only in product cases is it clear that
an appropriate CCR representation can be found;
in relativistic cases it is by no means clear that a
correct representation even exists.’

2. REPRESENTATIONS OF THE CANONICAL
COMMUTATION RELATIONS

For the sake of completeness, we recall here the
rigorous mathematical definition of a representa-

? However, if CCR exist for an interacting relativistic
field, then Haag’s theorem [see, e.g., R. F. Streater and A. S.
Wightman, PCT, Spin & Statistics, and All That, (W. A.
Jamin Company, Inc., New York, 1964), Chap. 4] requires
tt_ll_le:lgzgaesentation to be unitarily inequivalent to that of a

eld.
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tion of the CCR. The common definition of the
commutation relations in the Heisenberg form
proves unsuitable for rigorous mathematical study.
This is due both to the distribution nature of
the field operators and to the fact that they are
unbounded. Both difficulties are overcome in the
Weyl form of the commutation relations, the defi-
nition of which is given here.®

Definilion 2.1: Let U and W be real vector spaces
(the “test function’ spaces) and let f X g — (1, g),
f € U, g & W be a nondegenerate bilinear form
from U X W into R, the field of real numbers.
Let 3¢ be a complex Hilbert space, and § the group
of all unitary operators in j¢. Then a representation
of the CCR is a pair of maps U -5 G and W 5 g
which satisfy

WNw{1 = wif + 1, 2.1)
ViglVIg'l = Vig + ¢'], (2.2)
VW[l = e " W[f1VIg], (2.3)

such that for each f, g the operators V[ig] and
WItf] are weakly continuous functions of the real
variable £.

The spaces U and W are the ‘““test function”
spaces that are required by the distribution prop-
erties. The weak continuity condition ensures that
the field operators can be recovered. For it follows
from Stone’s theorem® that, for each f and g, self-
adjoint operators ¢(f) and =(g) exist such that

IV(f) - e!‘w o ,
V-(g — e—:’t (2) .
3. DIRECT-PRODUCT REPRESENTATIONS

In this paper we are concerned with those ir-
reducible representations of the CCR which can
be constructed as incomplete direct products of
Schridinger representations of the commutation
relations for one degree of freedom. In this section
we outline the construction of these representations.
We assume the reader to be familiar with von
Neumann’s results. Since they will be needed later,

8 More complete discussions of Definition 2.1 as well as
other examples of representations of the CCR can be found
in: L. Girding and A. 8. Wightman, Proc. Nat. Acad. Sci.
40, 617 (1954); A. S. Wightman and S. S. Schweber, Phys.
Rev. 98, 812 (1955); I. E. Segal, Trans. Am. Math. Soc. 88,
12 (1958); J. S. Lew, thesis, Princeton University, 1960
(unpublished); H. Araki and E. J. Woods, J. Math. Phys. 4,
637 (1963). Recently D. Shelupsky has classified into unitary
equivalence classes some of t{:e representations constructed.
by Wightman and Schweber. D. Shelupsky, J. Math. Phys.
7, 163 (1966).

* F. Riesz and B. 8z.-Nagy, Functional Analysis (Frederick
Unger Publishing Company, New York, 1955), p. 380.
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we will also define irreducible, direct-product repre-
sentations of the CCR for N degrees of freedom,
where N is finite.

Let 3¢, = L*(R), n = 1, 2, --- , and let the
Schrédinger representation be defined in L*(R,) by
the self-adjoint operators @ and P satisfying
(@, P] = 4l. It is well known that @ and P are
irreducible in L*(R,), and the Weyl form of the
representation for one degree of freedom is given by

Vilgl = €%,  Wilp] =™,  (3.1)
The Weyl form of the Schrodinger representa-

tion for N degrees of freedom (N < «) can be
constructed as follows. We note that

L'Ry) = ﬁ ® ae,,

, qn) are real

8.Ildifp= (le' ”'lpﬁ)!q= (ql!

N-vectors, then
Vigl = Vole:] ® - -- & Volgwl,
Wip] = Wolp] @ -+ & Walpal,

defines the desired representation. This is an ir-
reducible representation.

We now construct the direct-product representa-
tions for infinitely many degrees of freedom. Let
X = I3 ® xw where ||x,|| = 1 and x, € 3,
be a product vector in the complete direct-product
space.” Let

(3.2)

gex = I @ s, (3.3)
denote the incomplete direct-product space® (IDPS)
determined by X. Define on JCx unitary operators
V.lg.] and W,[p,], g, P Teal, by

Vn[‘.?n}= 1®®V0[qd®l®r
W =1Q - QWep] ®1& -+,

where Vi[g.] and Wy[p.] occur in the nth place
in their respective products, and the other
terms in both products are unit operators. Let
{h(x), n = 1, 2, ---} be a complete orthonormal
set of real-valued functions in L*(R,). Let

& = {y@) = 3 ahe), m < m}, (3.5

n=1
where the A; are arbitrary real numbers, and m
takes on all positive, finite, integral values. We
set the test function spaces U = W = @, and
define the bilinear form

(f, 9 = fR fg dz, where f, g € @.

(3.4)
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Then for any f, ¢ € @, we define V[g] and W[f] by

3 @),

il

Vi) = I Viled, ¢
(3.6)

:Z_; Paha(2).

Since the V[g] and W[p] are irreducible on each
3¢, the V[g] and W[f], for all f, ¢ € @, are ir<
reducible on the IDPS 3Cx.

We recall von Neumann’s definitions of equiva-
lence and weak equivalence for product vectors
in the complete tensor product space 3¢, and state
without proof some of their properties.®

Definition 8.1: Two product vectors X =[], @ xa
and A = [[2, ® X\, are said to be equivalent,
X & A, if and only if

wifl = 11 W.ipJ,

n=]1

f =

2 [0 M) = 1] < o (3.7)

Definition 3.2: Two product vectors X and A
are said to be weakly equivalent, X ~& A, if<and
only if there is a sequence of real numbers 6, such
that

I ®x~ [[@c".
Lemma 8.1: A necessary and sufficient condition
for weak equivalence is

2 1106 M| = 1] < . (3.8)
If two product vectors are not weakly equivalent
then

Noam n=]
Lemma 8.2: If X & A then J[Y., (xa, A\.) con-

verges and the inner product of X and A is defined
to be

(3.9)

(X,4) = fm INI (Xnr A)- (3.10)

—~® p=]
If X = A then the limit of (3.10) may not exist,
but the inner product of X and A is defined to be
Zero.

An IDPS is the closed linear subspace of the
complete direct-product space 3¢ which is spanned
by all product vectors in some equivalence class.
Qur canonical construction has assigned to each
IDPS a unique direct-product representation of
the CCR, since any two equivalent vectors de-
termine the same IDPS and hence the same repre-
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sentation of the CCR. It is also true that repre-
sentations defined on IDPS 3¢y and 3¢, in the same
weak equivalence class are unitarily equivalent.*
To prove this we use the operator

T - ﬁ@ﬂm

construeted by von Neumann,” who showed that
it is a unitary map from 3¢, onto 3¢x (where the
., are given in Definition 3.2). It is clear from our
construction that

TVA[U]T-: = Vixlgl, TW.AT = Wxlfl. (3.12)

One of the main results of our paper, proved in-
dependently in Secs. 4 and 5, is that weak equiva-
lence is also a necessary condition for unitary
equivalence of the representations.

4, GROUP ORTHOGONALITY RELATIONS AND
UNITARY EQUIVALENCE OF DIRECT-PRODUCT
REPRESENTATIONS

In this section we construct a Friedrichs-Shapiro-
type integral® for products of two matrix elements
obtained from the irreducible direct-product repre-
sentations of the CCR. In CRT V this integral
was introduced and evaluated for the case where
both matrix elements belonged to the same repre-
sentation of the CCR. These results are extended
to the case where the matrix elements belong to
different representations. We obtain a direct ana-
log of the group orthogonality relations, and use
these results to complete the classification into
unitary equivalence classes of the irreducible direct-
product representations.

The integral is defined as follows. Let GCy,,
t = 1, 2 be two IDPS, and let W.[f], V{g] be the
representations of the CCR defined in iCx,. Define

Uilf, g1 = V.lgIW.[7). (4.1)

(3.11)

If
f=2Xphy 9= 2 gl

we define the truncated functions fov,, gy by

~
fiy = Z Paltns
Y (4.2)

N
g = 25 Quha.

Let ®,, ¥, & dCx, and define
f (Ul[!l 91‘;’1: \I’])*(U—QU, g]q)'b ‘I’z) dbu (!J g)

= lim Iy(P,, ¥y; by, 1), (4.3)
Nz
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where
In(®,, ¥y; By, ) = f (Uilfnrs gen ]y, ¥))*
X (Uslf s, Gix D2, W) du (fewss er (4.4)
and
N
du (fonyy gun) = (2o)7Y H dp, dq,. (4.5)

n=]

Note that the fy, and g, are continuous functions
of the p,, ¢. and the domain of integration is
Ry X Ry. It should also be noted that the set of
operators Vig,] and W(f,] form a reducible repre-
sentation of the CCR for N degrees of freedom.
We now give two theorems relating to such inte-
grals,

Theorem 4.1: Let Ulp, q] = V[g]W[p] be an ir-
reducible representation of the CCR for a finite
number N of degrees of freedom. Then

[ W, a1, w)*Ulp, @), ) i (5, @

= (‘;", ‘l’z)('l’zr q’l)a
where du(p, q) is identical to (4.5).

(4.6)

Proof: A special case of this theorem when
®, = @, and |[®,|| = 1 has been rigorously proved
in Ref. 10, and is embodied in Eq. (3.16) of Ref.
10. The extension of this earlier proof to cover the
present case is trivial and is left to the reader.

Theorem 4.2: In a reducible representation of the
CCR for a finite number of degrees of freedom we
have

lf (L‘-[P: QJ(I)h \Ill)*(U[p! q](b?v ‘1’2) d.u ;‘p' q)!
< [l ]l [l {[eail. @7

Proof: We apply von Neumann’s result that any
such representation is a discrete direct sum of
copies of the Schrédinger representation.'' Thus
we can write

H

]

Seu,

o, and

'z-l: @ L(rr[p' qi)

where possibly L =

Ulp, q]

I

10 J, McKenna and J. R. Klauder, J. Math. P
§78 (1064) er, ath. Phys. 5,

1 J. von Neumann, Math. Ann. 104, 570 (1931).
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where U.[p, q] is the Schridinger representation
for N degrees of freedom. Let

(U[p: Q]‘I’, ‘I’).. = (Ur[P: Q]q’r: \I’,.),

where
L
=2 DY,
r=1
Using Schwartz's inequality we get

[ W, 0, %) Wip, 1w, ) e 0, 0)

=300,

rel

< 3 |[ w00, w2, gn, w000, 0)
< 2{[ 10w, an, 9. e 0, 0

x {[ W, a1, 9.1 du 3, 0}

- (={/ e, 05, w2.F e 0,0

x ({[ 1w, am, vo.1 4 0, 0 )

Using Theorem 4.1 the right-hand side of this
inequality becomes

(}f_‘, !l‘b.ll.ll%llr)(); [|@2[].]1%:]].)
< (X lIalh ARk
X (Z ll%]lf)’(; ARk

= [|®.]]-[[¥a]]-|®e]]- [a]|.  QE.D.

1t follows from Theorem 4.2 that Iy (®,, X,; ®,, ¥.)
exists and

[ (@1, ¥y P2, V)|
< ol 11|l [Nl %)),  4.8)
independent of N. We now proceed to evaluate

lm Iy(®,, ¥,; ,, ¥,)

N—=

for our direct product representations. [It should
be noted that Eq. (4.8) is valid for any representa-
tions of the CCR, not just the direct-product repre-
sentation of this paper. However, in general the
limit does not exist.] The following discussion is a
modification of the methods of CRT V.

We begin by defining some operators on the
IDPS 3Cx, where

X = H®x,, Ihall = 1

KLAUDER, McKENNA, AND WOODS

and x, &€ 3¢, Let P, be the projection operator
on x,, and I, the identity operator in 3¢,. We de-
fine a sequence of projection operators Ay, N =
l’ 2' - by

av=(llor)e(I1 ®r.) a9

n=l

It follows from Iiq. (3.10) that
lim A, =1

N—m

(strong convergence), (4.10)

For product vectors of the form

@

A=JI®N, A€,

n=1

we define a partial isometry B, by

ByA = {ﬁ (o A.)} fI @N;  (@.11)

By can be extended by linearity and continuity to
all of 3Cx. By is zero on (1 — Ay)3Cx and is a unitary
operator from Ay3Cx onto the finite tensor product
space Iy = Hf_l & 3C,. We are now prepared to
evaluate our integral.

We consider first the case where X, and X, are
strongly equivalent. Then 3¢x, = dCx,. Let Ay be
the sequence of operators obtained from X,. We
note that the integral Iy(®,, ¥,; &, ¥,) is linear
in &, and ¥, and antilinear in &, and ¥,, We
write

P = An“bl + (1 = AN)@:: (4-12)
and similarly for &, ¥, ¥, Then Iy consists of
2' = 16 terms. We consider first the 15 terms in
which (1 — Ay) occurs at least once. It follows

from Theorem 4.2 that these terms satisfy in-
equalities of the form

|I~((1 — AN)®,, AyV,; Ayd,, AN‘I'z)!
< I = AN®|| |[AxT |- || Ax®s||- || AT, ]|.
(4.13)

Since 1 — Ay — 0 strongly, these terms all
vanish in the limit N — «. We now consider the
term IN(ANq’;, AN\IH; ANq’g, AN‘I’g). Since the
representation Ulfy,, gcv] is irreducible on A4 y3Cx,,
it follows from Theorem 4.1 that

Iy(Ay®,, AyT,; Ay®,, AyY,)

= (A.\‘q)ﬂy A-\rfb,)(}i”\llh As\"l’g). (4.14)
Since Ay — 1 strongly, it follows that
lim IN(‘I’lr vy, ‘P2‘I’2) = (‘1’2: cbl)(‘I’:: ¥,). (4-15)

Ne=
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We consider next the case where X, and X, are
weakly equivalent. Let 7' be the unitary operator
of Eq. (3.11) which maps 3Cx, onto 3Cx,, and es-
tablishes the unitary equivalence of the representa-
tions [see Eq. (3.12)]. Then we have

lim Iy(®y, ¥i; $2, o) = (T'®s, 2)) (T, TV,), (4.16)
N-o
We remark that this could also be proved directly
without using the unitary equivalence.

Finally we consider the case where X; and X,
are weakly inequivalent. Let A, By be the opera-
tors obtained from X;, 7 = 1, 2. We write

¢, = A;‘I’; + (1 - A;)‘I’n (4.17)

and similarly for ¥,. As above, the only term
which does not obviously vanish in the limit N — «
is

In(Ax®,, Ay¥; Ay®s, AZTs).

We note that By maps the representation U[f,,
gun] on AxiCx, onto the Schrodinger representa-
tion on the finite tensor product space JCy. It then
follows from Theorem 4.1 that

IN(A_::;‘I?“ AJ:";’I; A;q’m A:"I’2)

= (B Ay®,, ByAy®)(BAAY,, By AyY,). (4.18)

It follows from Eq. (3.9) that the rhs of this equa-
tion vanishes in the limit N — o for product
vectors, It then follows by a continuity argument
that it vanishes for all vectors, and we have

lim Iy(®,, ¥y; P, ¥2) = 0.

N—o

(4.19)

In Sec. 3 we noted that direct-product repre-
sentations of the CCR defined on IDPS in the
same weak equivalence class were unitary equiva-
lent. If representations on weakly inequivalent
spaces were unitary equivalent, then the integral
in Eq. (4.19) could not vanish since it would be
given by (T'®,, ®,)(¥,, TV,), where 1" is the unitary
operator mediating the equivalence. Thus we have
obtained a complete classification of the irreducible
direct-product representations. We summarize our
results as

Theorem 4.3: Let U,[f, g] and U.[f, ¢g] be irre-
ducible tensor product representations of the CCR
defined on the IDPS ¢, and 3C,. If ¢, and 3C, are
weakly equivalent then there is a unitary operator
T from 3¢, to 3¢, such that

TUlf, )T~ = U.lf, 9], (4.20)
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and

lim[ (Uilfvys gan]®y, ¥)*(Uslf vy, 9]

N—=

X @y, W) dp (foy, gowy) = (T®s, 8,)(¥y, TV),
(4.21)

where

N
du (fvy, gan) = @m)~" I]; dp,. dq,. (4.22)

If 5¢, and 3¢, are not weakly equivalent then the
representations are unitary inequivalent and

lim f (Uilfiwry g 18y, ¥1)*

N—x

X (Ualfiwys gon]®2, ¥2) du (fowy, gann) = 0 (4.23)
for all ®,, ¥,, ®,, and V..

Note added in proof. H. Araki has shown that if
(for an irreducible representation) the group integral
exists and does not depend on the ordering of the
degrees of freedom in a fixed basis, then the rep-
resentation is a direct-product representation. [H.
Araki and E. J. Woods (to be published).]

5. “TAG TEST” FOR UNITARY INEQUIVALENCE
OF DIRECT-PRODUCT REPRESENTATIONS

As an alternate derivation of the results on
inequivalent representations derived in the last
section we employ a variant of the “tag test”
introduced in CRT V. Let U\[f, g], f,g € ®,72 = 1, 2,
be two CCR representations defined on the IDPS
JCx, in the manner of See. 2. Consider the sequence
of bounded operators

M
A = ECmUi[f(mj1 g(m)],

(5.1)

M =1, 2, --- , defined on each space. For sim-
plicity we do not explicitly indicate the M depend-
ence of the sequences {c,}, {/™}, and {g'”’} in
(5.1). If there exists a unitary map, T, of iCx, onto
JCx, such that for all f, g € @

U\lf, g = TU.If, 9)T77, (5.2)
it then follows for all M that
AIM = TA:.\rTuI- (5-3)

If any two sequences are related by (5.3) and
{A.y} converges weakly to a bounded operator B,,
then {A,)} converges weakly to B, = TB,T .
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In particular, if B, = I,, the identity operator on
Hx,, then B, = I,. To establish our desired in-
equivalence, we cook up a sequence of operators
such that B, = I, while B, = 0, thus invalidating
(5.2). Our choice of sequence is suggested by the
observation that since the

Uo[p,., s = Vo[q'a]WO[pn]

are irreducible in each 3C,, any projection operator
in 3¢, can be obtained as a function of the U[f, g].
The desired “tags” are then constructed with the
aid of projection operators on the components of
the product reference vector.

We recall that in the proof of weak convergence,
it is sufficient to show convergence on a set of
vectors whose finite sums are everywhere dense,
i.e., a total set. Such a set is composed of arbitrary
product vectors A;, @; € 3Cx, that differ from X,
in at most finitely many components., Thus we
consider expressions of the form

M ©

(Ai, Ain@) = 2 cu JT O, U™, ga™ o).
me=] n=1

We desire to choose a family of ¢, = ¢&5, B > 8,

where R, § = 1, 2, --- , such that the associated

Ay converges weakly to the projection operator

4 =(I@DO (I ®PIII@D.
Since we know'® that

[+ [ I 16 Udpe, add®
X (Xr‘u Uo[Pm q"]w;) g%:d&}

= HR (Ans X2) Ocas n),

8<ns<

we choose our sequences ¢**, pf™, ¢f™ such that

the limit M — o corresponds to this integral;
for example, we could use the sequence involved
in a Riemann definition of the integral. At any rate,
we are assured that AF® = TAF*T™' whenever
(5.2) holds.
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Now consider the matrix element

(A, ATPQ) = II (s, @) S(II(R (N, XD GE, wl),

(5.4)
Since Q; and A, differ from X; on only finitely
many components there exists a finite number q
such that

wa =M =% 0L
Hence for B > S > L, Eq. (5.4) becomes
(Ail A:?SQ;) - H O\v:t w:) QHR |(x:|1 Xi)]z'

n<S
Now

lim (A, A®5Q) = T O\, wd)-F?,

R—w@ n< S

where
F; =1lim1 = 1,

R+

F{=1lim JI |Ga, )l
R—+m S<n<R
If X, is weakly inequivalent to X, it follows from
(3.7) that F§ = 0 for all S. However if X, is weakly
equivalent to X,, then (3.8) implies that limg..
F3 = 1. When we combine these facts we see that
lim lim (A;, AT2Q) = bi(As, R,
> -0
b, = 1, and b, = 1 or 0 depending on whether
X, 2~ X, or not, respectively. Since this result holds
for arbitrary ©; and A; in our total set we are
assured that Eq. (5.2) cannot hold for any two
representations defined on weakly inequivalent
spaces. Since the unitary equivalence of repre-
sentations defined on weakly equivalent spaces
was shown earlier, this completes the classification
of unitary equivalence for our product repre-
sentations.

It is clear that a trivial adaptation of the present
procedure implies that analogous, irreducible direct-
product representations of the canonical anii- com-
mutation relations defined on weakly inequivalent
IDPS (where each 3¢, is two-dimensional) are
unitarily inequivalent.
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It is shown that the normal ordering method of solving boson operator equations leads to closed
solutions of the Schrodinger and density operator equations only in certain cases. In particular, a
necessary condition for the existence of solutions of the form 91 [exp [G(a:*, a.)]i with G a finite mul-
tinomial is that the Hamiltonian be of the general form H = ¥; i(ci;aita; + € aia; + ¢ *aita;t) +
Yileia; + ci*ai*) + ¢. Approximate solutions may be obtained for the density operator for arbitrary

Hamiltonians.

1. INTRODUCTION

EFFNER and Louisell' have recently proposed

a powerful method of solving some operator
equations appearing in quantum mechanics. They
have shown that it is possible to transform differ-
ential equations involving certain noncommuting
operators into partial differential equations involving
only commuting quantities. This technique, which
we shall eall the normal ordering method, is discussed
thoroughly in Refs. 1-3 and we do not repeat the
details. The purpose of this paper is to point out an
inherent limitation in the method and to list all
possible cases in which it leads to closed solutions. To
be precise, consider any second quantized Hamil-
tonian H = H, + \H, where H, = >, w,a%a; and
H, is a finite multinomial in the boson operators a%
and a;(i.e, [a,, a}] = &, @, 0;] = [a%, a7] = 0).
We want to find that class of Hamiltonians for
which the following equations are “form-solvable”
by the method of normal ordering:

alU/at = HU, (1)
idp/at = Hp — pH. (@

Here U is the time-development operator for solu-
tions of the Schradinger equation in the Schrodinger
picture and p is the density operator in the Schri-
dinger picture. By form-solvable we mean that the
dependence of U or p on the operators a’; and a;
may be written exactly as 9fexp (G)], where G is a
finite multinomial in a% and a; with c-number
coefficients, and 91 is the normal ordering operator,
defined in Ref. 1, which places all annihilation
operators to the right of all creation operators

* This work was performed while the author held a NASA

Tramueslup at Stanford University.
(1% . Heffner and W. H. Louisell, J. Math. Phys. 6, 474
5

(w’W H. Louisell and L. R. Walker, Phys. Rev. 147, B204
65)

3 W. H. Louisell, Radiation and Noise in Quantum Elec-
tronics (McGraw=Hill Book Company, New York, 1964).

without regard to commutators., It may not be
possible to solve for the coefficients exactly. We
shall show that the class of Hamiltonians which
leads to form-solvable equations [(1) or (2)] is
restricted but that there exists for every Hamiltonian
a systematic approximation procedure capable of
generating solutions of (2) valid to any given order
of \.

2. SOLUTION OF THE SCHRODINGER AND
DENSITY OPERATOR EQUATIONS BY THE
NORMAL ORDERING METHOD
Schridinger’s Equation

As in Ref. 1 we solve Eq. (1) in the interaction
representation in which

U(t, t,) = exp (—iH ) V(L, 1,) exp (iH,t,),
where V(I, t,) satisfies
19V(L, ty)/at = H, (a7, a;; V(L &), 3)
with the boundary condition V(¢, &) = 1. Appli-
cation of the normal ordering technique replaces (3)

with a partial differential equation in the c-number
variables @% and a,:
iaV(at, a; 0)/at
= (@@, a + 9/aa’; hV(as, di; 1),  (4)
where V(a%, @) is obtained from V(a%, a.) by
commuting all annihilation operators to the right
of all creation operators and replacing a? with a*
and a; with @;. Equation (4) is to be solved by
assuming the trial solution V = exp [G(a*, a;; t)],
where ¢ is a multinomial in @% and d; such that
both sides of the equation for G' have equivalent
multinomial structure. The coefficients are then
determined from the system of ordinary differential
equations resulting from comparison of coefficients
of like monomials.
In general, it is difficult to guess the appropriate
multinomial structure of G by inspection. In fact,
it is often the case that no finite multinomial @
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will satisfy (4). To see this, consider the differential
equation for G (we choose £, = 0 for convenience):

190G/t = A +RG, Glt=1t =0 =0. (5)
Here A has the same structure in a’ and a, as I,
does in @} and a;, and R, is a differential operator
(possibly nonlinear) in @% and a;. Equation (5)
has the formal solution

G() = —i exp (—ilR) f exp (it'R) A(t)) dt’,

which shows that the multinomial structure of ¢
must include that of > 7 RIA(RIA = A). Thus G
has a finite multinomial structure in ¢% and a; if
and only if there exists an integer N such that for
every n > N the structure of RiA is included in
that of XY o R7A. If N is the least integer for
which this condition is satisfied we shall say that
R, is form-bounded of order N with respect to A.
Consequently, a necessary and sufficient condition
that Eq. (1) be form-solvable is that R, in (5) be
form-bounded with respect to H,(a%, a,).

Density operator equation
Working in the Schridinger picture, we find for

the partial differential equation resulting from (2)
by the normal ordering technique
iop/ot = [H(a%, a; + 9/da’; t)
— H(a' + 9/da,, ai; D]p.  (6)
Substitution of the trial function 3 = exp (G)
leads to
2 dG/al = (Ty + TG, (7)

where T, arises from H, and T, from H, operating
on exp (G). In Eq. (7), T, is an example of a form-
bounded operator of first order with respect to
any multinomial in @* and @ In fact, since H, =
> wata,, then

T, = X2 wlal 9/oa; — a: 8/da;).

It is easy to see that when this operates on any
multinomial, the result is a multinomial with no
new terms of different structure.

Equation (7) has the formal solution

G(t) = exp [—ui(To + AT))]G(0). (8)
Since T, is known to be form-bounded, Eq. (8)
shows that it is necessary and sufficient that 7',
be form-bounded with respect to G(0) in order that
(7) and hence (2) be form-solvable.
3. GENERAL FORM-BOUNDED OPERATORS

We have scen that form boundedness of the
operators I, and 7', in Egs. (5) and (7) is a necessary

H. MARBURGER

condition for the existence of closed solutions of
Egs. (1) and (2) by the normal ordering method,
In this section we state two theorems which allow
us to list all Hamiltonians which lead to form-
solvable equations. Both theorems are proved in
the appendix.

Theorem I: Let A be the general monomial in M
variables:
A = g7l v oall, (9
and T the general linear operator of one term:
z3 (8/02,) 1 (9/dz)"* -+ (8/0xa)' ™
(10)

Then the following operators or linear combinations
of them are the only linear ones form-bounded
with respect to A.

T = zi'ay’ -

(a) T asin (10) with s; < {; for some 7.

(b) T as in (10) with s; arbitrary, but {; > n;
for some j.

(¢) T asin (10) with s; = {; for all 4.

In general, it is not sufficient to consider linear
operators. In fact, if the trial solution exp (G) is
substituted in a linear differential equation of order [,
then G satisfies an equation which includes the
nonlinear term

TyG = zi'zs + -+ 23 (0G/dx)"
X (0G/dx,)* -+ (8G/dza)' ™. (11)

This is the only nonlinear operator we shall discuss.
If Ty in (11) is form-bounded, then in all the prob-
lems considered here the other nonlinear operators in
the equation for G are also form-bounded. Theorem
II lists all operators (11) form-bounded with respect
to the monomial (9).

Theorem II: Let A be the monomial (9) and
Ty the nonlinear operator in (11) with > ¢, > 2
(otherwise Ty would be linear). Then Ty is form-
bounded with respect to A if and only if it falls
in one of the following cases: ‘

(a) n; =0 and ¢ 0 for some 7.
(b) n;, =1 and TyA = (94/dx,)"".

(¢) n; =1,n; =0 for j#=1¢ and
TNA = :t:.-(aA/OI‘-)“.
dn,=Ln =1,n=0 for ks1j

and TyA = (9A/0x,)(0A/dx;).
4. SOLVABLE HAMILTONIANS

The physical requirement that the ITamiltonian
be Hermitian, together with Theorems I and II,
allow us to write the most general Ilamiltonian
leading to a form-solvable Schrédinger equation.
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To do the same for the density operator equation
we require additional information concerning G(0).

Schridinger’s Equation
If H, in (3) is such that R, in (5) is linear, then H,
must be linear in a;. The most general form, which
ig also Hermitian, is

H, = X cyata; + 2 (cia; + c%a’) +c,
where ¢;; = ¢X, and ¢ is real. This leads to
Rl = Z C;id; 6/667 + z‘: C; a/ad:‘,

which according to Theorem I is form-bounded with
respect to H,(a%, a,). (This is also easily verified
by direct computation.)

If R, is nonlinear, it is evident that, by construc-
tion, case (a) of Theorem II never occurs. Case (b)
appears for {; > 2 only in combination with other
terms which are not form-bounded. For example,
the presence of the term (8G/da%)*" in R, implies
the presence of the term a@*(dG/aa%)'*~*, which,
for t; > 2, is not form-bounded with respect to
(@)'’, which must appear in H,. A similar argument
eliminates case (¢) for {; > 1. Thus only case (d)
of Theorem II is allowed, giving terms in H pro-
portional to a;a; and a’a’. We therefore arrive at
the following conclusion: A necessary condition for
the existence of a closed solution of Eq. (4) of the form
V = exp [G(a*, a; t)] is that the Hamiltonian H
tn (1) have the general forn

H = E (ci;a%a; + Ea.a; + Ehata?)
+ 20 (cias + cta’) + ¢,

= ¢* and ¢ is real.

SE]

(12)
where ¢;;
Density Operator Equation

To obtain a definite condition for the form soly-
ability of Eq. (7), we require the general form of
G(0) and hence the density operator p(0). In principle
G(0) is arbitrary, but in practice one always assumes
that p(0) describes an equilibrium situation in
which the corresponding Hamiltonian is H,. By
“equilibrium situation” we mean that the entropy
S = —k Tr {p log p} is & maximum subject to the
constraint that the average energy, and possibly
other dynamic variables, is fixed. In this case it
has been shown® that p is proportional to exp (F),
where F is linear in the fixed variables. In particular,
F'is linear in H,, which always contains the bilinear
term a’a; for a boson system. By Eq. (13) below

e —
*E. T. Jaynes in Statistical Physics: Brandeis Summer
{ggg‘;uie Lectures, 1962 (W. A. Benjamin, Inc., New York,

MECHANICS OPERATOR EQUATIONS

831

it follows that G(0) always includes the term a*a,.

The general Hamiltonian, which leads to a linear
operator T, in Eq. (7), is the same as that obtained
for the Schridinger equation. For nonlinear opera-
tors, cases (a) and (¢) of Theorem IT are excluded by
the discussion above. Case (b) is excluded for f; > 2
because it always appears simultaneously with
another operator which is never form-bounded.
We therefore conclude that a necessary condition
for the existence of a closed solulion of Eq. (6) of
the form p = exp [G(a%, d.; 1)) is that the Hamillonian
have the general form (12).

5. DISCUSSION

Many boson systems of physical importance
have Hamiltonians which are not of the form (12).
It is relevant to ask what implications our analysis
has for the solvability of Eqs. (1) and (2) for these
systems. In this connection, it is important to
notice that the normal ordering method always
yields solutions in normal form. However, there are
many finite multinomials #(a;, a,) such that exp (F)
cannot be written as M{exp [G(a*, a;)]} for finite G.
In fact, exp (F) can be written® as 9[f(a%, a;; 1)]
where f(a%, a;; t) is a solution of

af/ot = F(a%, a; + a/0a%)f, (13)

with f(a%, a; 0) = 1. Since this is equivalent to
Eq. (4), it follows that exp [F(a%, a;)] may be
written in closed form as MN{exp [G{a*, a;)]} only
if F' has the general form (12). We conclude that
even though a problem is not form-solvable by
the normal ordering technique, a closed-form solution
may still exist.

Another important consideration is the extent
to which the choice of exp (G) as a trial function
limits the generality of our results. It is readily
verified that any other trial function leads to very
complicated nonlinear equations for ¢. Moreover,
the initial conditions become quite awkward for
the density matrix equation. In view of these
difficulties any nonexponential closed-form solution
is to be regarded as highly exceptional.

Even when Eq. (2) is not form-solvable by the
normal ordering method, it is possible to find a
multinomial structure for /() which satisfies (7)
to a given finite order of A. Expanding the formal
exponential in (8), and using the form boundedness
of T, one finds that the form > ¥, T7G(0) satisfies
Eq. (7) to order A", This approximation is subject
to the usual limitations. In particular, it is not
valid for times large compared with the characteristic
time determined by A™'. A more fruitful approxi-
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mation scheme might be to consider that part of
the exact Hamiltonian which is of the form of
Eq. (12) as solvable and treat other terms as
perturbations by conventional techniques.

Finally, we remark that the general quadratic
Hamiltonian (12) can be diagonalized exactly by
a canonical transformation to new boson variables.
While this transformation is useful for finding the
exact energy spectrum, it is generally difficult to
extract from it information concerning the decay
of the unperturbed modes of the system. The
normal ordering technique, however, is quite valua-
ble in such cases.

The author wishes to thank Professor H. Heffner
for a stimulating conversation in connection with
this paper.

APPENDIX: PROOF OF THEOREMS I AND II

The following proofs ensure that the operators
listed as form-bounded in Sec. 3 are the only possible
ones.

Proof of Theorem I. Operating on (9) with (10)
! times yields

I(oa—ty)+ 1 —ta)+ I{apa—t M)+
TtA - 9749:1(" 1) 4ny Iztu sd4na xunn M)+na

Xﬁmm—m

i=]1
M M
x IT 6(s: +ni—2¢t) -+ H o[(l — 1)s; +n, — 1t,],

TS i=
where 9, is a constant and #(z) vanishes for x < (?
and is unity otherwise. If 7"A4 is to have monomial
structure included in > !} T™A then one of the
following cases must be true:

Case 1. One of the 6-functions vanishes. In
this case there exists an [ such that I(s; — t;) —
s; + n; < 0 for some 7. Obviously, such an [ always
exists for s; < t;. If s; = t; then a 6(the first) vanishes
only for t; > n,. If 8; < t; the condition is (I — 1)
(s; — t;) < t; — n; where the left side is nonnegative.
Thus ¢; must exceed n;.

Case 2. No 9 vanishes for any [. It is necessary
to choose s; and ¢; such that I(s;, — &) + n; is
independent of 1. This is true only for s; = t; for
all ¢. This exhausts all possibilities for linear form-
bounded operators. The admissible cases are listed
in Theorem 1.

Proof of Theorem II. Operating on (9) with (11)
[ times gives
. M A TZ_.:. ¢™+nip!
TvA = ™" [T = ™

=]

H. MARBURGER

x IT ot — o - T [ o2 5 0

i=1 m=0

+ noytt — 1)]“,

where A; = s, — 4, ¢ = 2% 1, and XY is a
constant. For form boundedness, we have the same
two cases as in Theorem I:

Case 1. One of the 6 functions vanishes. We
require A, R + ny'™" — 1 < 0 and ¢; % 0 for
some 4, where B = > 23" = (' — 1)/(¢ — 1).
First suppose that A; < 0 for some 2. If n;, = 0
our condition is A; B < 1 which is always satisfied.
If n; = 1 we require t; > ¢ + s; — 1 which is
satisfied only for s; = 0 and y = ¢, leading to case (b)
of the theorem. For n; > 1 we require

W =1 Al > ' = Dy — 1)

which is never satisfied. (This is evident for [ = 1.)
For I > 1 our condition is

A > [y = D/ = DIy — 1),

where the coefficient of ¢ — 1 is not less than 2.
Thust; > 2 Qomtw — 1) + 8; > 2(t; — 1), which
implies t; < 2 and therefore 2 > 2(y — 1) or ¢ < 2
(which contradicts the hypothesis of the theorem).

Now suppose A; > 0 for some 7. The requirement
that a @ function vanish for some [ and ¢ becomes
AT — 1) < (1 — ayg'™)( — 1), which is
always satisfied for n; = 0 and | = 1. For n; > 0,
the case [ = 1 yields 0 < (1 — =n)¥ — 1),
which is never true. For I > 1 we have A; <
[ = 2y /(' — D]¢ — 1) which is never
true, the bracketed expression being negative.
Finally consider A; = 0. Our condition reduces to
na'™' < 1 which is true only for n; = 0.

Case 2. No # function vanishes. Here it is nec-
essary that A, ».!'Z! ¢™ 4+ ny' be independent
of I for all 7. This requirement is satisfied if and
only if the condition —A; = n,(¢ — 1) is true for
all 7. Summing over ¢ gives » ¥ n; = ¢/(¥ — 1) —
2, 8/( — 1). Thus 3 n; < 2. The case Y
n; = 01s excluded by the hypothesis that no 6 vanish.
If En.- = 1 our condition reduces tot; — s; = ¢ — 1
which leads to case (c) of the theorem. If 3 n, = 2
we require ¢ = 2 — E s; which in turn requires
> s; = 0 leading to case (d) of the theorem. This
exhausts all possibilities,

Note added in proof. The formal solution immedi-
ately following Iq. (5) is correct only if R, is time-
independent, but the condition that R, be form-
bounded with respect to A can be shown in general.
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In this paper, the spectral properties of the Boltzmann operator describing the transport of mono-
energetic neutrons with anisotropic scattering in a slab are considered. The Hille-Yosida theorem is
applied to obtain the semi-group of operators solving the initial-value problem.

1. INTRODUCTION

N the last few years one can observe the growing

interest in the pulse neutron experiments in
reactor physics. The theoretical interpretation of
such experiments has been for long time based upon
the diffusion approximation, in which the time-
dependent neutron flux is expanded into a complete
set of eigenfunctions of the diffusion equation.
Lehner and Wing''® first showed that for the trans-
port equation in a slab the complete set of discrete
eigenfunctions does not exist and the solution of
the initial-value problem involves also the contin-
uous spectrum. An important generalization to
multigroup transport equations in a slab has been
given by Pimbley.?

This paper is an expansion of the Lehner and
Wing approach to the case of anisotropic scat-
tering. The initial-value problem for a slab is con-
sidered. The spectrum of the Boltzmann operator
is found and the Hille-Yosida theorem is applied
for finding the semigroup of solution operators.

The presented analysis may be used in practical
computations of the decay constants of neutron
pulses in a slab. The most suitable way of doing
this seems to be the normal mode expansion ap-
proach employed for isotropic scattering by Bowden
and Williams.* The normal mode expansion method
for anisotropic scattering has been developed by
the author.®

2. THE FORMULATION OF THE INITIAL-VALUE
PROBLEM

Consider an infinite slab of thickness 2a sur-
rounded by a vacuum. The cross section o is con-
stant. At time { = 0 a neutron distribution f(z, u)
exists inside the slab.

1 J. Lehner and G. M. Wing, Commun, Pure Appl. Math.
8, 217 (1955).

 J. Lehner and G. M. Wing, Duke Math. J. 23, 125 (1956).

¥ G. H. Pimbley, J. Math. Mech. 8, 837 (1959).

‘R. L. Bowden and C. D. Williams, J. Math. Phys. 5,
1527 (1964),

¢ J. Mika, Nucl. Sci. Eng. 11, 415 (1961).

The Boltzmann equation and the boundary condi-
tions for the time-dependent neutron distribution
n(z, u, ) has the following form:
1dn

on
T e} wor + on(z, u, 1)

c +1
=< [ g, winte, ', 0,
< J

n(£a,pu ) =0; ws0, >0,
n(z, 1, 0) = f(z, u);
—a<z<a —-1<up<l. (21)

The scattering function g(u, ') will be considered
in the following as a finite sum of Legendre poly-
nomials:

N
gu, w') = ,{“?5 bP(1)Py(w"), (2.2)
where b, are the numerical coeflicients with b, = 1
In Eq. (2.1) the standard notation is used (see,

e.g. Ref. 5).
It is convenient to write

n(z, My t) = 6"‘\&(17, K, 1. (2.3)

Then choosing, for convenience, ¢ = v = 1 we have
from Eqs. (2.1)

/ot = Ay, Y(£a,p, 1) =0; xS0; t>0,
24
IP(.'C, M, 0) = f(ﬂ:, »u); '—GSISQ} i S K S. I;

where the operator A has the form

N +1
A= —p ai-i-g 2 bd”g(#)f du'Pi(u')- . (2.5)
x & k=0 =1
The existence of the semigroup of the solution
operators for Eq. (2.4) is related to the spectrum
of the operator A. Therefore we will investigate the
spectrum of A, first defining the proper space of
functions to work with.

833
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3. THE SPACE OF FUNCTIONS

Let 3¢ be a space of square-integrable functions
in rectangle || < 1, |z| £ a with the scalar product

o= [ ar [ due, 0a@n G

and the norm

1l = ¢, N (3.2)

Here §(z, u) denotes the complex conjugate.
The integral part of the operator 4 is a projection
of 3¢ to a subspace defined as follows:

Let L, be a space of square-integrable functions in
(—a, a) with the scalar product
o = [ ai@o. (3.3)

Then define L as a produet space I, = L, X L, X
«+v X L, (taken N times) with the scalar product

G0 =3 [ dat@aw.

The norm in L will be also denoted ||f||. It shall
not lead to any confusion.

Operator A on 3¢ has as the domain D(A4) all
functions absolutely continuous in z for each fixed
u(lu| < 1) which satisfy the homogeneous boundary
conditions stated in Eq. (2.4).

(3.4)

4. THE HALF PLANE Re2. < 0

We will show now that the entire half plane
Re A < 0 belongs to the continuous spectrum of A.
In other words, there exists a set of functions
¥ € D(A) such that

sl = 4.1)

const > 0

and

lim [I(x = A)sl] = 0. (4.2)

We use the same functions as Lehner and Wing®:

x + a —l(x-n)/n

vilz, w) = by(p) — — (4.3)
where
1/8 < u<s
b;(,u) - / =H =0
0 otherwise.
Here0 < 6§ < %, ReXx =8 < 0.

It is quite easy to show that both Eqs. (4.1) and
(4.2) are satisfied by the functions y;(z, u) defined
by Eq. (4.3).

JANUSZ MIKA

Now the spectrum of A is a closed set and there-
fore we may state

Theorem 1: The half plane Re A <
the spectrum of A.

5. THE SYSTEM OF INTEGRAL EQUATIONS

< 0 belongs to

To investigate the right half of the spectral plane
one has to use the system of integral equations
instead of the integro-differential equation

(A= Ay = (5.1)

with the boundary conditions stated in Eq. (2.4).
Let us solve Eq. (5.1) for ¢(z, ) assuming the
integral part to be given. We get

!P(I. I‘)
= N
— i . -‘«’_M‘—”h‘l:g ka&(#)'#t(I’):I dz’, u>0;
i f‘ e'“‘"""“[ i bePy(u)g (a:'):’ dx’ <0
2# L prart e\ )Py ’ M -
(5.2)
The moments ¢, (x) are defined as
+1
s@ = [ WP ). 63

To get a system of equations satisfied by the
moments ¢.(x) one has to multiply both sides of
Eq. (5.2) by P.(u) and then integrate over all g. The
change of the order of integration requires care
(see Ref. [2]).

As the result one gets for Re X > 0, A # 0

ACEED> f Bu(hiz — )W) d,

n=01,---N, (5.4)

with

B.(\; 2) = bylsgn (2)]"** f du — P (w)Py(u)e™ ="

been @1 [ % p,(Mp (D,

(5.5)

The integrals in Eqs. (5.5) are easily recognized as

linear combinations of the E,(z) functions as defined,

for instance, by Case, Hoffmann, and Placzek.®
Equations (5.4) may be written in a vector form

¢ = icByg
¢ K. M. Case, ¥. Hoffmann, G. Placzek, Introduction to

the Theory of Neutron l)zﬂ'unon (Lus Alamos Scientific Labo-
ratory, Los Alamos, New Mexico, 1953), p. 153,

I
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where the vector ¢ has components ¢,(x), and the
matrix By the elements B, (\; x — 2').

The presented derivation shows that every solu-
tion of Eq. (5.6) yields the corresponding vector ¢
belonging to L and satisfying Eq. (5.6). By perform-
ing the derivation in the opposite direction one can
check that every vector ¢ satisfying Eq. (5.6) yields
the solution y(z, u) of Eq. (5.1).

Thus we may state

Theorem 2: A necessary and sufficient condition
that A € Ped on 3¢ with Re A > 0, A # 0 is that
2/c belongs to PoB, on L. The eigenelements
¥(z, u) corresponding to X and ¢ corresponding to
2/c are related to each other by Egs. (5.2) and (5.3).

Here we use the notation Ped, Red, and Cod
for the point, residual and continuous spectrum and
aiAd for the resolvent set of the operator A.

6. THE RESOLVENT SET

Denote by I' a set of points X such that Re A > 0
and \ & PoA. The points of I' belong to CoAd, RoAd
or MA. Then R, = (A — A)™" always exists. We
will prove that for A\ € I', R, is bounded and
D(R,) = 3C or, in other words, I' & 9A.

Consider the equation

AN—Au=g; geEII (6.1)

It has a formal solution which can be obtained in a
way similar to that used in the last section,

R\g = u(x, u)

T
i lf e—h(r*:"l/u
ILI -a

X [g > bPwaE) + o', u}] da', w>0,

— d zg’J\(z—z’)/ﬁ
M Ja
N
X [ch E bkpk(#}fk(xr) + g(;v,.- #):| d’.l'.", n < 0;
& k=0
(6.2)
where
1
a@ = [ P, W) i (63

Multiplying by the consecutive P,(u) and integrating
over p we get a system of equations

The matrix B, has been defined in the last section,

¢ is the vector with the components £,(z) and G is the
vector with the components G, (z) given by
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1 F3
6@ = [ L) [ g, 1y av
o H —a
— ’ d_,l.l, : ~Mz—z'}/u ’ ’
e Py e glz’, p) dzx
1 0
= [ BPG W du+ [ G, 6 da
o =1
= Gi"(x) + G (2). (6.5)

We will show now that if ¢ € 3¢ then ¢ & L.
Denoting 3 = Re X we have

|HM(z, w)] < J%‘ﬂj; e P gle — t, w)| dt

@ —Bt/2u —Bt/2p

e e
<), o=t #)let, (6.6)

where we define g(x, x) = 0 for |z| > a. Applying
the Schwartz inequality to Eq. (6.6) gives

HO @, @) € f P lgte — 1, WP di. (6.7)

= B

Now applying again the same inequality we get

GP@P < f IHO (@, 1)]? du

l ' d_"". - =8t/ 2
=2 € lgtz—t, w)|* dt. (6.8)
BJo u Jo

Finally,

j 6D @) dz
1 fYde 7 - =
<--f —f ,‘""“dtf — b, W d
<L a7 g — b P e

== %f_a dz ]ﬂl du |g(z, w)|*. (6.9)

Hence

16521 < 5 lall. (6.10)

The same estimate holds for G (z). It follows
then that G € L.

Let us now return to Eq. (6.4) where ¢ & L
and B, is a compact operator. The latter follows
from the fact that ||By|| < « for Re A > 0, A 5 0.
(See the next section.) For A &€ T, 2/c¢ is not an
eigenvalue of B,. By an alternative principle, ¢ is
uniquely determined for a given g & 3C. Since 1 —
¢/2B, is bounded and one-to-one (it maps L onto
itself), (1 — ¢/2B,)™" is also bounded. Therefore

const

llgl] < const [|G]] < (6.11)

Hall.



836
Now put

M, ) = § 3 BPWEE + o, 0. 6.12)
Then

[IR]] < %e max b, |[¢]| + |lg|] < const [lg]], (6.13)

which shows that h(z, y) € dC.
Now in exactly the way used above one can show
that

|lu]| < const ||k]| < const |[g]].  (6.14)

From this we see that u € 5Cand u = (A — 4)7'g
is bounded. Therefore B, = (A — A)™" is bounded
and its domain is 3C.

Thus we have proved

Theorem 3: The open half plane Re A > 0 deleting
any points A & PoA, is contained in the resolvent
set onA.

7. THE POINT SPECTRUM

The remaining question is the nature of that part
of the point spectrum which is contained in the half
space Re X > 0. We will denote it by Po, 4.

By Theorem 2 we shall work with the integral
operator B, defined in Sec. 5.

Theorem 4: Po,A is bounded in the complex A
plane.

Proof. If A € Pos,A, then (1 — ¢/2B,)™" does
not exist.
Now

1Bl < T 1Bl @)

from the definition of the norm in L. Further,

1Bull = [ as [ s’ 1Buthiz = 2)F

< 2 f " |Buh; 9 da. (7.2)

To get the estimate for B,, we write
= dt

dt o (L\p (1), 116
; t b "(z)P“(t)e

, g L ™ akiati B [1 ,(1),(1)]
_>.|11+x|xjj:d” at L PP
(7.3)

From this it follows that

1Bu(r; 2)| < M/l (7.4)

JANUSZ MIKA

We use this estimate for |Az| > 1. For [Az] < 1 we
have

1Bu(h; 2)|* < My(log® \z| + i#') + M. (7.5)

Equation (7.5) follows from the power expansion of
E, [see Eq. (7.10)]. M, M,, M,, are some positive
constants.

Using both Eqgs. (7.4) and (7.5) we get from Eq.
(7.2)

|[|Bu|| < const/[x]. (7.6)

Thus we see that for Re X > 0 and |A| sufficiently
large the Neumann series converges and (1 — 4¢B,) ™"
does exist. This proves the theorem.

We proceed further with investigating Po,A.

Lemma 1: Suppose that Pe.4A has an accumula-
tion point A*. Let {\,] be a sequence such that
A\, — M. The nth components of the corresponding
sequence of normalized eigen-elements [¢'} form
an equi-continuous set.

Proof.
l6:"(x + h) — &7 () *

X f_ (Bu(r;z 4+ b — z%)

=<
1=

— Bu(h; z — )]s (2') dz’

S%{§ ‘[_‘: |Buk()‘,;1‘. + ; — I')
— B\ — Ir)lz dx,}{*z.‘:) j:a l¢£v)(z’)lz dI’}
(7.7

c? N 2a
<2x]
4 i

[Bue(Ay; u 4 R) — Bou(,; w)|* du.

As it was mentioned, each of the functions
B.,.(\; ) can be written as a linear combination of
functions E,(A|z|). Namely

B.(\;z) = bu(sgn 2)"** 2° ;‘ T e o ) B \
e (7.8

. ] .
where a,, are the coefficients of successive powers of
Legendre polynomials:

Pl =~ T mal®,

(7.9)

The exponential integrals E,(z) can be expanded
into power series according to the formula
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En(z) = .[} %8_"
o B el e e I
N u—o&—l ?n! (ﬂ —— 1 ”1) + ( 1) ( 1)!
X (log z — A, +7),
. . _ ‘—ll,
v=0577216 --- ; A, =0, A, = =
(7.10)

From Eq. (7.10) it is seen that each of the func-
tions B, can be written in the form

Ba(\;2) = gu(X; T) — Quotuo log N, (7.11)

where g,..(; z) are well-behaved for A = 0 and a,,
are defined by Eq. (7.9). From Eq. (7.11) we see
that the terms with log A, cancel in Eqs. (7.7) and
we have to consider the expressions

g u + B) = gu(As; w)]. (7.12)

The functions g..(\; 2) are for Re A > 0 square-
integrable in any finite interval of z, e.g., (—2a, 2a).
This follows from the fact that the series in g,,.(\;; )
allow for the estimates exp (Mz*) and the logarithmic
terms are obviously square-integrable.

Therefore one may use the result of Titchmarsh’
that, for any funection, square-integrable in the
interval containing the interval (a, b),

b
lim [ itz + B — f@f dz = 0. (7.13)

From this and Dini’s theorem it follows that the
last term in Eq. (7.7) converges uniformly to zero
independently of zand p, p = 1,2 --- , |z| < a.
This proves the assertion.

Lemma 2: Under the same assumptions the com-

ponents of eigen-elements are uniformly bounded.
Proof.
Let a* s 0.
N a
BP@E < 3 f Bu(h; o — 2 do’
AN (7.14)
< const/ |\, "

Equation (7.14) follows immediately from Eq. (7.6)
For \* = 0 we shall proceed in a different way"
Using Eq (7. 11) we may write

P@ =3 [ gutniz — 0@ dr

,,,-leogx -Eam-f"qs"’u' (7.15)

U ’E C. 'I'nchmarsh The Theory of Functions, (Oxford
niversity Press, Londrm, 1939).
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From Eq. (7.15) and the properties of g, it follows
that

N
1+aclog N, 2 an

n=0

E a,.,f 7 (2) dzl < const
(7.16)

for [\| < M where M is a certain positive number.
Using again Eq. (7.15) we have

627 (2)| < My + M,

o [ 606 @
(7.17)
where M, and M, are some constants.
From Eqs. (7.16) and (7.17) we conclude finally
that
6" (@)| < const (7.18)

for any A such that Re X > 0 and [A\| < M. This
proves the lemma.

Lemmas 1 and 2 are the necessary and sufficient
conditions for the Ascoli’s theorem to be true. Thus
we may state

Lemma 3: If \* is an accumulation point of
Pg,A, then there exists a sequence N\, — \* for
which the normalized eigenelements {¢®’}, ¢ =
¢/2B, ¢, possess the uniformly convergent con-
tinuous components. The normalized limit element
¢* has also continuous components.

Now we state

Theorem 6: The point A = 0 is not an accumulation
point of Po,A.

Proof.
From Eq. (5.2) we can write

vz, u) = if e e R
[g kak(lu)‘tl(eﬂ(-r’) y w>0,
= g;f dx! g drtz—="11e
N 1
X [g bPuwe” (@) |, » < 0. (7.19)

By the standard argument this ¢*'(z, x) con-
verges uniformly to the continuous limit funetion
V*(z, u) as p — . Therefore if \, — 0

. N
if_ dx'[z bsz(M)tﬁ’i(-E'):', w>0,

Zuf dx’ (*Z luﬂ(u)ef»*(a:)1 » <0.
(7.20)

'I/*(rl #) =
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Since ||¢*|| 1 it is seen that the integrand in
right-hand side of Eq. (7.20) is not identically equal
to zero and it follows that ¢*(x,u) is not integrable
with respect to u for some given z, |¢| < a.

On the other hand, for each A, the corresponding
¢ (x, u) belong to the Hilbert space and are in-
tegrable with respect to in the interval (—1, + 1).
Then by Fatou’s Lemma the limit funetion ¢*(x, u)
is also summable—which contradicts the previous
statement. This shows that the assumption X\, — 0
leads to the eontradiction and proves the theorem.

From the continuity of the operator B, and on
the basis of Lemma 3 and Theorem 5 we conclude
by

Theorem 6: Pe,A is closed. If A* is an accumula-
tion point of Pe, A and if {X,] is a sequence of points
such that A, € Po,A and X, — A% and if ¢'*
are the corresponding eigenelements, then ¢* =
lim,..¢™ is an eigen-element corresponding to the
cigenvalue \*,

It seems that no further information niay be
obtained about the spectrum of the operator A, at
least, by the methods developed so far in the sub-
ject. It may be noted that in the ease of the multi-
group approximation Pimbley® gets more detailed
information by restricting himself to a class of sym-
metrizable matrices. In our case it scems that the
matrix operator By cannot be put into a symmetric
form by any transformation.

On the other hand it is highly plausible that the
diserete eigenvalues all lay on the real axis and are
finite in number exactly as for the isotropic scat-
tering. This calls, however, for further investigations.

8. SOLUTION OF THE INITIAL-VALUE PROBLEM

The final problem is to find the solution to the
time-dependent transport equation with the initial
condition stated in Fq. (2.4):

Y _

o = A e ) = [, w),

€ D(4). (8.1)

The domain of A ineludes all funetions absolutely
continuous in x for each fixed x| < and satisfying
the homogeneous boundary conditions. They are
dense in the Hilbert space since they include all
continuously differentiable functions vanishing out-
side a compact subset of the region [z| < a, x, < 1.
Therefore D(A) is dense in 3C.

In Sec. 6 we have proved that, for \ € T, R, =
(N — A)7" is bounded and its domain is 3¢. Then A
is also closed.
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To get the estimate of R, put

A= —D+ct; D = ud/dx; (8.2)
1 N 1
£ =3 2 bl [_ ' Pu).
The operator ¢ is bounded since
I N
efll < 5 g [Be] [IP4) 1] 11f]] < const [|f[]. (8.3)

Also foru € D(A)

2 Re (Du, u) = [ d,uf n',r[ alfu - @iu]
=1 -a
=0

= f pdu fula, w|* — [ pdp lu(—a, p)|*

(8 )
Thus for 8 = Re A
Re (A — Au, w)
= 8 {lu|]® + Re (Du, w) — ¢ Re ({u, w)
2 B |[ul* — ¢ Re (su, w)
2 B |lu|* — c|(su, w)|
> (8 — e |l¢l]) lulf. (8.5
Now sget ¢ = (A — A)u. Then Eq. (8.5) gives
llgll-lull = ig, W] = 8 — ¢ |IZID [lel[*,  (8.6)
or, for g8 > C| g.',
u| < llgll/@B — e [lEl). (8.7)
From Eq. (S.T) we see that
Rl < 1/(8 — e |5l (8.8)

With this estimate the Hille-Yosida theorem® as-
sures the existence of the semigroup 7'(/) of bounded
solution operators continuous for ¢ > 0, with
7(0) = I. This family satisfies the differential
equation

(d/ahrT(nf = ATQf,  [€ D(4), (8.9

and thus solves the initial-value problem for the
transport equation,

We can write the solution of our problem also
in the integral form

L— W 1“
Ve, w ) = lim 5 [ MRy dh,

(>0 1€ D(4), a>cllt]l (8.10)

The integral is to be understood as a strong limit
of Riemann sums.

s I Hille, “Functional Analy=i- and Semi-groups,
Am. Math, Soc. 31 (1148).
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This paper deals with the time-dependent neutron transport in a plane slab of material with
variable nuclear properties. The one-velocity theory and the isotropic scattering are assumed. The
spectral properties of the corresponding Boltzmann operator are found, and the initial-value problem

is solved.

1. INTRODUCTION

N Part I of this paper,' the author has considered
the initial-value problem for a monoenergetic
Boltzmann equation for a slab assuming the aniso-
tropic scattering of neutrons. In this part we deal
with a monoenergetic slab in which the nuclear
properties of the material are dependent on position.
In practical applications one would use the results
presented here mostly for the case of a system of
uniform slabs. Such a situation may often happen in
the experimental neutron physies.

In this paper we find some of the spectral prop-
erties of the Boltzmann operator for a considered
system and solve the initial-value problem.

For simplicity, the isotropic scattering of neutrons
is assumed. One could use, however, the results of I
and consider the general case of a nonuniform slab
with anisotropic scattering.

2. FORMULATION OF THE PROBLEM

Consider an infinite slab extending from z = —a
to 2 = a surrounded by a vacuum. The time-depend-
ent transport of monoenergetic neutrons is described
by the Boltzmann equation

aN | 4N
ot TRy T e@NG@ w0

w . (2.0)

1
- 0@ [ 4 v

2 =
The standard notation is used here. The neutron
velocity is assumed equal to unity. The nuclear
properties of the medium described by the total
cross section o(x) and the mean number of second-
aries per collision ¢(x) are functions of position. The
scattering is assumed to be isotropic. N(z, u, 1)
describes the angular neutron distribution as a func-
tion of time, position, and the cosine of an angle be-

tween neutron velocity and the axis x.

1.y, Mlka, J. Math. Phys. 7, 833 (1966); preceding paper
in this issue, hereafter referred to as I,

The boundary and initial conditions for Eq. (2.1)
are the following:

N(:tal 1y t) =10, H §01
N(z, 1, 0) = [(z, u).

The solution of the initial-value problem formu-
lated above requires the knowledge of properties
of the Boltzmann operator A defined by Eq. (2.1),

L al(x)- + c—(x)g(x) _/: du’ .

“H ooz

>0, oy

A= (2.3)

The most important are the spectral properties
of A. In other words, one has to find for which values
of A there exists a solution to the equation

(k= A =0, (2.4)

where ¢(x, p) satisfies the homogeneous boundary
conditions

Y(ta,w) =0, pS0. (2.5)

Define the Hilbert space 3C of square-integrable
functions in rectangle |u| < 1, |z| < a with the
scalar product

(o = [ ar [ dufe, wamw @8

and the norm

ikl =, N (2.7

The bar denotes a complex conjugate.

We will work also with the space L, of functions
square-integrable in (—a, a). The secalar product
and the norm in L, are defined as follows:

(0 = [ dsf@e@) @8)

and

il = ¢, Hh. (2.9)

No confusion will arise from the fact that the same
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notation is used for the scalar product and norm in
3¢ and L, spaces.

The operator A on 3¢ has as the domain D(A)
all functions absolutely continuous in z for each
fixed p, |u| < 1, satisfying the boundary conditions
(2.5).

For simplicity, we will assume that both ¢(z) and
o(z) are nonnegative bounded functions, square-
integrable in any interval contained in (—a, a).
These assumptions might be too restrictive from
the mathematical point of view, but they are ob-
viously satisfied by any physically relevant function.

Introduce an average value of ¢(z) in an interval
(x,, =;) contained in (—a, a).

il ) f " olad) Gfs — ).

(2.10)

Denoting by ¢, and oy the minimum and maxi-
mum values of ¢(z) in (—a, a), respectively, we have

O L olzi, %) L oy >0 e >0 (2.11)
for z,, s € (—a, a).
Similarly,
o = t{z) Loy >0 ey >0 (2.12)

forz € (—a, a).

3. THE INTEGRAL EQUATION

Equation (2.4) can be formally solved with respect
to ¢(z, u). We get

mm=ifﬁ'

X exp [(f dz""(\ + a(;")))/u}

X ez )a(z")p{x’), u>0, 3.1)
X exp [u(f dz"(\ + a(z")))/p]
X o@)o@)é@), u <0,
where
#@ = [ e, da. (3.2)

By integrating both sides of Eq. (3.1) with respect

JANUSZ MIKA

to p, one can obtain an integral equation for ¢(z)

Re A > —on; A #E —0on. (3.

One may notice that if o(2', ) = o. on the set
zero measure then A = —¢, is allowed.
If the above condition is satisfied we get

6@ = L [ awe(e)o(e)ox)
L, . e

X E [N+ o, 0) |z — 2], G

where the function E,(z) is defined in I.
The integral equation (3.7) will be written in
operational form

The definition of the operator F, follows from E
(3.4).

The presented derivation shows that every sol
tion of Eq. (2.4) with the boundary conditions (2.5
yiclds the solution of Eq. (3.5). By performing.t
derivation in the opposite direction we see tha
conversely, every solution of Eq. (3.5) yields
solution of Eq. (2.4). '

In the following we will use the notation for thi
spectrum of a given operator T' as introduced in

Using this notation we state the following:

Theorem 1: A necessary and sufficient conditio
that A € PoA on 3 with Re A > —on, A # —0
is that 2 belongs to PoFy on L,. The eigenfunctio
¥(z, 1) and ¢(x) are related to each other by Eq
(3.1) and (3.2).

For fixed A such that Re A > —oy,, F) is a co
pact operator. To show this we can write for th
norm of I,

IR < [ dx f dx'c’(x")o" (x")
X B\ + o2, 2)) [z — 2'|)].
From the properties of E,, it follows that

B\ + o', 2) |u])

const const
< - —.
= Nt olz’, 2)] [u] = N+ ow| [yl

(3.6

3.

For |\ + om |lu| < 1 we use another estimat
IEA + o(2’, 2) Juf?
< const [log* (N + ofz’, 2)| lu)) + i’]

< const [log® (X + o ) + 3=°]. (3.8
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Let us rewrite Eq. (3.6),
A" < c:.of:;f_ dz’ f., du
X |E((N + o2, u + 2) [ul)]*

< Chioa f dx’

B 1/ h+aml -1/ A +eml ™
X [[-llllu.l + f—m + -/:/ll-n..!:l o
X ]El( ’ )|2 (3.9)

Now from Eqs. (3.7) and (3.8) we see that each
of the integrals in Eq. (3.9) exists and is majorized
by an integral independent of z’. Performing the
integration we have finally that

[1F:|[* < const/|\ + oul. (3.10)
Thus we have proved that F, is a compact operator
for ReA > —ow.
4. THE REGION Re )\ < —d,,

We shall now show that all the points A such that
Re A € —o. belong to the spectrum of A. To do
80 it is enough to find the functions ¢; € D(A) such
that

||¢s]| = const > 0 (4.1)

and

lim [ — Asll = 0. (4.2)

For Re A € —o, and 0 < 3§ < %, we choose the
following functions:

V@, 1) = (z + a)bs(u)
X exp [—(z — a)(\ + o(z, a))/u]

bi(n) = {1/6,

0, otherwise.

(4.3)
where

2
0 < u 5 5: (4'4)

One can now easily check that ¥;(z, ), defined as
above, belongs to D(A), and it has both of the re-
quired properties given by Egs. (4.1) and (4.2). In
fact, ¢,(z, u) is an absolutely continuous function
of z for each given g, |u| < 1, and

\h(:f:G. .“) = 0: I § 0. (4.5)

Further, we can show that Eqgs. (4.1) and (4.2)
are also satisfied.

In such way we have shown that for Re A < —ay
the points A belong to the spectrum of A.

Now consider A such that —oy < Re A < —a,.
Assume further that the minimum value of a(z) is
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attained at one of the boundaries, for instance, at
z = a. Now select a point z, such that o (z) < —Re X
for z > x, and construct for 0 < § < } the following
function:

0, —a <z < 2, (4.6)
(x—20) by(p) exp[— (z—z0) A +o(x, 70)) /],
T S TS G

‘Il(x: #) =

This function obviously belongs to D(A) since it
is completely continuous and satisfies the boundary
conditions (4.5).

We can now prove that ¢,(z, x) fulfills Egs. (4.1)
and (4.2) in exactly the same way as that used for
Yi(z, u). It is sufficient only to substitute x, instead
of —a in all corresponding formulas.

The restriction concerning the minimum wvalue
of o(z) attained at the boundary can be relaxed
in the following way. In the case when this minimum
is attained inside the body we put an additional
layer of black material with ¢(z) = 0 and ¢(z) = oy
Such a layer does not change the behavior of neu-
trons inside the body since the boundary conditions
are the same, namely, in both cases there are no
incident neutrons. But the previous proof is now
valid.

Finally we see that the points —oy < ReX < —o,
also belong to the spectrum of A. Now oA is a closed
set and we have

Theorem 2: The region Re A € —o,, is contained
in the spectrum of the operator A.

5. THE RESOLVENT SET

Denote by T a set of points A, such that Re A >
—o, and N & PoA. The points of T' belong to ReA,
Cod, or MA. Then R, = (A — A) ™" always exists. We
will show that R, is bounded and D(R,) = 3C or,
in other words, that I' & 9nA.

Consider the equation

g € I 5.1

This equation allows for the formal solution which
may be obtained in a way similar to that of Sec. 3:

(A — Au =g,

R;g e u($1 F’)
- ::[1 dz’ exp [—(1: = I’)()\ + 5(3’: I))/"‘]

X [?-C(I')O'(I’)E(I') i o 9(3': P‘)]) w>0,
- %J' dz’ exp [—(@ — 2')( + ola’, 2))/u]
k<0,

X [2¢(z")o(2)E(x") + g(z’, )], (5.2)
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with

) = [ e, ) d 5.3)

For Re N\ > —o. we can integrate both sides of
Eq. (5.2) with respect to u. The result is

E=nE+G. (54)

The operator F, has been defined by Eq. (3.9). The
function G has the form

G=G1+G2

- f (e, w) du + [ Hia, ) du

I T
~ T
X exp [—(z — 2")(\ + o(2’, 2))/ulg(z’, w)
0 d_].l. z ,
4_11# ﬁth
X exp [—(x — 2")(\ + o(2’, 2))/ulg(@’, w). (5.5)

Now using the method similar to that of I we
can show that G € L, if g € 7¢C.

In Sec. 3 we have shown that F, is a compact
operator. For A & T by virtue of Theorem 1, 2
is not an eigenvalue of F,. Then £ is uniquely deter-
mined for ¢ € 3¢ from Eq. (5.4). In other words,
(1 — 4F,)" exists for A € I and its domain is all
of L,. Since (1 — 4F,) is bounded and one to one,
(1 — 3F,)™" is also bounded. Therefore,

el < const [|6]] < const/(3 + o) llgll- ~ 5.6)

Now put
Wz, u) = 2c(z)o(x)é(z, u) + g(z, ).  (5.7)
From Eq. (5.6) we have
||R]| < const [[g]]. (5.8)

This shows that A & 3C.

To get the estimation of u(z, u) as given by Eq.
(5.2), we use the same procedure as that for G, sub-
stituting h(z, p) for g(z, n). We get

llul] < const [[A]. (5.9)

We see that v & 3¢ and is bounded. Therefore
R, = (A — A)™" is bounded and its domain is 3c.
Thus we have proved

Theorem 3: The region Re A > —g,, deleting
points X & PoA, is contained in the resolvent set
of A.
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From the estimate (3.10) one sees that for s
ficiently large values of |N 4 .| the Neuman
series for F, converges. This shows on the basis
Theorem 3 that the spectrum of 4 is bounded in {
region Re A > —o,,. That result is obvious from t
physical point of view since it means that there exis
an upper bound for the asymptotic decay constan

6. SOLUTION OF THE INITIAL-VALUE PROBLE

Having found some of the spectral properti
of the operator 4, we turn now to the original initi
value problem stated in Eqs. (2.1) and (2.2).

By the Hille-Yosida theorem (Ref. 8 of I), t
initial-value problem for A generates a semigrou
of solution operators if the following properties
A are satisfied:

(1) A is closed;
(2) D(A) is dense in 3¢;
@) IRl < A — 9)7%; A real and v >0.

R, exists and is bounded. Its domain is 3¢. Heneci
it is closed. Therefore, so is A. This proves the firs
property.

The second property follows immediately fro
the definition of the domain of A.

To prove the third property let us write

A —D — o+ ¢,

(6.1

where

((Ig(z) 3 d[-l"

(6.2

D = u(3/3z)-; o = a(2)-;

=

The operators ¢ and { are obviously bound
Denote k£ = ||{]| < emon. For u € D(A) we hav
2 Re (Du, )

- [ [l o]

fa udu u(a, p)|* — L p du lu(—a, u)[*

=0
(6.3

Thus for 8 = Re A
Re (A — A)u, w)
= 8 |[u|[* + (o, w) + Re (Du, u) — Re ({u, h
> (8 + ow) [|ul* — |(tu, 0
> B+ ow — k) [|ull’.
Nowputg = (A — A)u. Then Eq. (6.4) gives
ull Hgll = (g, W] = B + ou — &) ],

(6.4)

(6.5)
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orfor 8 + ou > k,

[ull < llgll/(8 + ou — k). (6.6)
This means that for 8 + o, > k
IR\ £ B+ o — K)7, (6.7)

which proves the third property of A.

Now the Hille-Yosida theorem states that there
exists a semigroup of bounded operators T'(f) con-
tinuous for ¢ > 0 with 7(0) = 1. This family satisfies
the differential equation

. @a0T(Of = AT(Of, [€E D(4), (6.8)
and thus solves the initial-value problem stated in

Eqg#(2.1) and (2.2).
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The solution can also be written in the form
NG, w, ) = limsl [ _ [Ryf] d,
t>0, 1€ D(A), a>k =]l (6.9)

The integral is to be understood as a strong limit
of Riemann sums.
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Lorentz invariant expressions, in the form of determinantal conditions, are derived for the physical
regions of many-particle processes. They are explicitly solved in the case of five-particle processes
and the solutions are exhibited in the planes of pairs of the five independent kinematic invariants.
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L. INTRODUCTION

HEN studying a process involving a number

of relativistic particles it is sometimes de-
sirable to have a knowledge of the physical regions,
that is, the physically accessible ranges of the
kinematic variables used to describe the process.
Byers and Yang' in a recent paper carried out
such a study of the physical regions of N-particle
processes in terms of Lorentz-invariant wvariables.
It is proposed here to present an alternate deriva-
tion leading to simpler conditions and to apply them
to the case N = 5. The method for doing this is
based on a theorem of Omnes® and in essence results
in a generalization of Kibble’s® treatment of two-
particle scattering.

In the next section Lorentz invariant expressions
in the form of determinantal conditions are derived
for the physical regions of N-particle processes.
The masses of all particles are regarded as given
and the kinematic invariants chosen as variables
are the scalar products of the 4-momenta involved.
Section III treats the case of five particles. The
general expressions are solved explicitly and the
solutions are exhibited as functions of two inde-
pendent variables with the three remaining vari-
ables treated as parameters.

All quantities throughout are real.

II. N-PARTICLE PROCESSES

In an N-particle reaction let the 4-momentum
of the 7th particle of mass m,; be p; with p} = mi.
The variables used to describe the physical regions
will be a linearly independent set chosen from the
set of invariant scalar products p;-p; = z;;. The
specification of which particles are incoming and
which are outgoing is not made. Hence, the result-

* Partially contained in the author’s Ph.D. thesis (Prince-
ton 1963, unpublished).
(19164%‘ Byers and C. N. Yang, Rev. Mod. Phys. 36, 595

1 R. Omnes, in Dispersion Relations and Elementary
Particles (Les Houches 1960; John Wiley and Sons, New
York, 1960), p. 341.

3T. W. B. Kibble, Phys. Rev. 117, 1159 (1960).

ing equations will give the physical regions of all
processes which involve a total of N particles (as
suming a particle and its antiparticle to have th
same mass). The procedure for the construction
of these regions is an application of a theorem o
Omnes® which is presented here in slightly modi
fied form without proof.

Theorem: Given m real linearly independent
4-vectors p;(m < 3) with p} = m? > 0 there existg
another real 4-vector p,., with pi,, = mi,, and
Di* Pms1 = Timer (2= 1,2, -+, m) real if and only
if the Gram determinant A,.., = det (z;;) with
1,7 =1,2 -+, m - 1 satisfies

(_1)m+1Am+l S 0: (I

where (x;;) is the obvious (m + 1) X (m + 1)
symmetric matrix.

It is apparent that the desired physical regions
can be obtained in the (real) space of the scalat
products of the 4-momenta by applying this theoren
in steps beginning with m = 1. To be explicit the
construction proceeds as follows:

(a) Given p, then p, exists if and only if the de
terminant
4, £0, 2
which gives the range of the kinematic invariant z,,
(b) Assuming (2) holds then p, exists if and only if
Az 2 0. (3
Consequently (2) and (3) together give the ranged
of thez;; fort, 5, =1, 2, 3.
(¢) Assuming (2) and (3) hold then p, exists if
and only if
A, 0. (4);
Thus (2), (3), and (4) together establish the
ranges of the z;; (¢, j = 1, 2, 3, 4) in order that the
four 4-momenta exist simultaneously as real

vectors.
The theorem can be applied no further since the;
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case m = 3 has been reached. This is quite alright
since four real linearly independent 4-vectors have
been established and can be taken to span the four-
dimensional space of the vectors.

(d) Thus, assuming (2), (3), and (4) hold a fifth
vector, ps can exist as a real 4-vector if and only if
it is a linear combination of the four vectors already
established. This is guaranteed by requiring A; = 0.

In fact, any number of additional vectors ps, ps,
ete. can exist simultaneously as real 4-vectors if
and only if all sets of five vectors are linearly de-
pendent. Asribekov* has shown that if there are a
total of N — 1 vectors then this condition of linear
dependency is assured by the }(N — 5)(N — 4)
conditions

r-'ﬁn Tz Tz T 31;
T2y Tz Tag Tag Taj
det [, Z32 Zay Tse T3 | = 0,
Tar Taz Taz Tya Tay
LTy Tiz Tia Tia Tig)
fori,j = 5,6, --- ,N — 1. (5)

(e) There is one further condition to be imposed
on an N-particle process namely conservation of
4-momentum which takes the form

N
Epi =O’

=1

(62)

where p, is forward (backward) timelike if the
particle is incoming (outgoing).

This equation can be put in terms of the scalar
products z,; by taking its scalar product with all
the p; to obtain a total of N conditions:

(6b)

N
Emii=0 (=12 -,N).

i=1

Thus the physical regions of N-particle processes
?n the space of the inner products of the 4-momenta
18 given by the intersections of the regions defined
lfy conditions (2) through (6). The number of
linearly independent scalar products can be found
quite simply from the above to be 3N — 10, a well-
known result.

The general discussion is not carried any further.
As a familiar example the physical regions of four-
particle processes are given by the intersection of
the regions defined by (2) and (3) with condition
(6) holding. These are exactly the equations con-

* V. E. Asribekov, Nucl. Phys. 34, 461 (1962).
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sidered by Kibble® and reference is made to his
analysis.

III. FIVE-PARTICLE PROCESSES

The physical regions of reactions involving a
total of five particles are given by the intersection
of the regions defined by (2), (3), and (4) with
condition (6) holding. There are five linearly inde-
pendent variables in this case which will be chosen
tobes = (p + p2)’, t = (p2 + ps)*, u = (ps + P2,
v = (pi + ps)’, and w = (ps + p,)°, and are clearly
linearly related to the z;; of the previous section.

Rather than attempt to treat each of these kine-
matic invariants on an equal footing, the physical
regions are studied in the planes of pairs of them
while regarding the remaining ones as parameters.
It is easy to convince oneself that such a study need
be carried out only in two planes, e.g., the s — u
and the s — w planes, in order to cover all possi-
bilities.

The procedure will be to impose conservation of
4-momentum (6a) and solve (4) leaving (2) -and
(3) to enter naturally. Hence using (6a) and the
above choice of variables, (4) can be transformed
into the symmetric determinant

2m? s—mi—m; v—s—i+m; t—w—ov+mg

2m; t—mi—m; w—ti—u-tm; <0
2m; u—mz—m,
. 2m;

Adding appropriate rows and columns and chang-
ing the sign of the first row and column the de-
terminant becomes (still symmetric)

W —v—it+mi s—v—m; v+mi—m;
. 2 2 N . 2
o 2t l—ma+my w—Ii—my )
2mi u—mi—ms
2m;

with condition (4) replaced by L < 0.

L may be regarded as the determinant of a sym-
metric matrix whose elements a;; are defined by
(7). The advantage of this form of L is that the
variables s, u, and w each occur only in the ele-
ments a,3, a4, and a,, (and, of course, the transposed
elements as;, a, and a,,), respectively. A study of
the curve L = 0 in the plane of any two of these
variables is then relatively straightforward. In par-
ticular, the physical regions will be constructed in
the s — u and the s — w planes by establishing
conditions on the remaining parameters such that
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the curve L = 0 will oceur in these planes and such
that L < 0 will define the physical regions,

The notation used in this section is the following.
L is the determinant (7). L;,.... is the principal
minor of L obtained by deleting rows and columns

i, j, -=+ , k. V,; is the cofactor (signed minor) of
the element a,; of L; in particular V,;, = L.
V(@j --+ k)mn 18 the cofactor of the element a,.,

in L.',‘...g.

The study of curves defined by the vanishing
of a determinant like L = 0 is facilitated by a
method developed by Tarski’® which is based on
the Jacobi ratio theorem.® Some of the useful formu-
las are derived in the Appendix and one result,
Eq. (A2), is that

I.l.'LII: = L”'L = 1’3,‘ L O. (8)

This gives the important information that the
surface L = 0, as a function of all five variables,
exists only in regions where all L; have the same
sign.

Also of importance is the solution of L = 0 for
the a;; which is, from (A4),

a;; = [Vio £ (L,-L,-)i]/L,—,-, (9)

where V,;, = V', evaluated at a,; = 0. This shows
that the surfaces L = 0 and L; = 0 are tangent
when they meet.

For later convenience expressions for the L;; are
recorded below.

L, = —[u— (my + m)®J[u — (my — my)*],
Ly = —[w— (& + m)’Jw — (& — m)*),
Ly = —[t — (my, + m:‘)z][z =y — mi’)z]’

(10)
Lis = —[v — (my + me)*)v — (m, — my)?],

—[s — @' + m)*)[s — ' — my)?,
—[t — ' + m)?l — O — m)?).
Physical Regions in the s—u Plane

Regarded as a function of s and u, or equivalently
of a3 and ay,, L is quadratic in these variables and
the curve L = 0 is a conic section in their plane.
L, = 0 is also a conic section in this plane but all
other principal minor curves will either be straight
lines or will not appear,

The necessary and sufficient conditions for L < 0
to define the physical regions are simply obtained.
It is straightforward to put L, in terms of the
inner products of the 4-momenta. In fact it involves

¢ J. Tarski, J. Math, Phys. 1, 149 (1960).

¢ A. C. Aitken, Determinanis and Malrices (Oliver and
Boyd, Edinburgh, 1956), 9th ed., p. 97.
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P1, Ps, and pg in the form of the Gram determinant
A;. Thus (3) requires L; > 0. Since this does not
involve s or u, it puts a restriction on the remaining
parameters. In a similar manner, L,; may be put
in the form of the Gram determinant A, involving
ps and p;. Thus (2) requires L,; < 0. Because con-
servation of momentum has been built into L the
conditions L,, < 0 and L, > 0 guarantee that
L < 0 defines the physical regions. All that re-
mains is to find the conditions such that L = 0
will actually occur in the a,; — a;, plane.

First of all L, > 0 requires L;; < 0. To see this
consider (8) with 7 = 2, j = 4, and L; and its co-
factors replacing L and its cofactors:

Ly = = t[V(g)z-ilz — Luslia}/ Lo,

where, from (7), L.y, = 2v. Thus, if » > 0 then
L can be nonnegative only if Ly, < 0 (since Lyy < 0).
On the other hand, if v < 0 then from (10) L;, < 0
for all values of {. In both cases w must be chosen
to make L, nonnegative. The permissible range of
w may be found by a simple application of (A5) to
L, with a;; = @, = w — { — mj.

Next, from (8), L = 0 oceurs only in regions
where all L; have the same sign which, since L,
is nonnegative, requires that L, be nonnegative.
This in turn requires the condition L, < 0 the
proof of which is similar to that above. From (8)

with ¢ = 1, j = 3, and L, and its cofactors re-
placing L and its cofactors:
Iy = - {["’{4)13]2 — LyLay} /Ly,

where, from (7), Lz, = 2t Thus, if ¢ > 0 then L,
can be nonnegative only if Ly, < 0 (since Ly, < 0
as shown above). On the other hand, if { < 0 then
from (10) L,, < 0. In both cases L, = 0 will occur
in the s—u plane and so there will be regions where
L, is nonnegative. The equations of these straight
lines may be found by applying (9) to L, with
i=137=3

g == m§ =03 = [V('l):ao = (LHLxd)i]/LI:N-

Furthermore with L, and L, nonnegative it czu:J
be seen from (9) with ¢ = 3, j = 4 say, that th
curve L = 0 will occur in the s—u plane.
Consequently, the necessary and sufficient con-
ditions, i.e., restrictions on ¢, v, and w, in order l,ha.tJ
physical regions exist in the s—u plane, are Ly, L,
Ly <0, and L, > 0. These conditions may bel
imposed in the following manner: (i) choose v such
that L., < 0, (ii) choose t such that Ly, L, < 0,
and (iii) choose w such that L; > 0. The physical
regions will then be given in the s—u plane by theq
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regions L < 0. From the asymptotic form of L = 0
given by (A6) it can be seen that the curve will
be a hyperbola if ¢ < 0 and an ellipse if ¢ > 0.

The form of the relevant curves in a typical
example is shown in Fig. 1. The two physical
regions present are shaded. Region A refers to the
processl +2—3+ 4+ 50r3+4—-1+4+2+45
while region B deseribes the reaction 2 4+ 4 — 1 4
34 5orl+ 3—2+ 4+ 5 The convention used
is that if particle n is incoming its 4-momentum is
p. While if it is outgoing its 4-momentum is —p,.
This can be seen from (6a) also.

Physical Regions in the s-w Plane

The form of L = 0 in the s—w plane, or equiva-
lently in the a,, — a,, plane, is more complicated
than in the previous case: it is no longer a conic
section. On the other hand, all principal minors
of L appear as straight lines tangent to L = 0.

Now, as before, if L,; < 0 and L, > 0 then the
physical regions will be given by L < 0. The impli-
cations of these conditions and the conditions neces-
sary in-order that the physical regions exist in the
a3 — @5 plane must be obtained. First of all it
will be shown that all the lines L; = 0 must occur
in the plane.

Recall from the previous section that L,, < 0
implies that L, and L, can be nonnegative only if
Ly < 0 and Ly, < 0. Application of (9) to L; with
2, 7 = 4 then shows that L, = 0 occurs as
two straight lines parallel to the a,y (or s) axis thus
guaranteeing a region in the plane where L; is posi-
tive. Similarly, it is easy to show that L, = 0 occurs
as two straight lines parallel to the a,, (or w) axis
thus guaranteeing a region where L, is positive.
Since, from (8), L = 0 occurs only where all L;
have the same sign, conditions for L, and L, to be
nonnegative must found. Applying (8) to L, with
1 =2, j=4yields

L, = — {[V(I)za]z = leLu’/Luu

where, from (7), L,y = 2mZ. Thus, L, can be non-
negative only if L,, < 0 (since L,, < 0). Further-
more, application of (9) to L, shows that L, = 0
oceurs as two straight lines parallel to the a,; (or s)
axis.

In a similar manner L, may be written

1=

L, = — {[V(Q)la]z == LuLzal/leas
where Ly.y = 2mj. Thus L, can be nonnegative
only if L, < 0 (since L,; < 0). Also it is easy to
show that L, = 0 oceurs as two straight lines

parallel to the a,, (or w) axis.

REGIONS OF MANY-PARTICLE PROCESSES
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2
u=(ps+py)

Fia. 1. Typical physical regions (shaded) for five-particle
processes. A refersto]l +2 -3 +4 +50r3 +4—1 42 +
Swhile Brefersto2 +4—1 43 +50rl +3 —2 + 4 + 5.

Therefore, the physical regions can occur in
the plane only if L,s, L., L, and L;; < 0 which
also guarantee that all the curves L; = 0 appear
in the plane. In order that the physical regions
actually do occur, there must in addition be a region
or regions where all the L; are nonnegative. This
is assured if just L, and L, (or L, and L) are non-
negative. For if L, and L, are nonnegative in a
region then application of (9) withz = 1, j = 3
gives a real value for a,; (or s) thus showing that
L = 0 occurs there, which in turn implies that L,
and L, are nonnegative in the region also. There
does not appear to be any simple expression for
these conditions involving only the parameters ¢,
u, and » so they will be left as they stand.

Consequently, the necessary and sufficient con-
ditions, i.e., restrictions on ¢, %, and v, in order that
physical regions exist in the s-w plane, are L.y, L,
Ly, L € 0and L, Ly > 0. These may be im-
posed as follows: (i) choose » such that L,, < 0,
(ii) choose t such that L,,, Ly, < 0, and (iii) choose
w such that L, < 0 and L, > 0 overlaps Ly, > 0
in the s—w plane. The physical regions will then be
the regions L < 0.

It should be noted that in general many regions
where L is negative will exist but not all will be
physical regions (where all the L, are positive).
Furthermore the physical regions are bounded.
For in the expansion of L, the coefficient of a3,
is —L;,e = —2m} which shows that L, is positive
between the lines L, = 0. Similarly the coefficient
of a, in the expansion of L, is —Lys = —2m]
which shows that L, is positive between the lines
L, = 0. The region where L, and L, are positive
is therefore bounded and the physical regions are
contained in it.
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Fia. 2. A typical physical region (shaded) for the process
1+2—93+4+50r2—1+3+4-4405.

A typical example of the configuration of curves
to be found is shown in Fig. 2. There are three
regions where L is negative, only one of which is
the physical region (shaded). It describes the re-
actionl +2—-3+44+50r2—1+4+ 3+ 4+ 5.

IV. SUMMARY

A set of algebraic equations for the physical
regions of N-particle relativistic processes has been
derived in terms of kinematic invariants. The solu-
tion of the equations however was not attempted
for N greater than five. In the case of N = 5 they
were solved only by regarding them as functions of
pairs of the five independent invariants treating
the remaining three as parameters. The permissi-
ble ranges of these parameters were then established
such that the physical regions actually can and
do exist in the planes of the pairs of wvariables.

The author wishes to thank Professor L. F.
Cook, Jr. for bringing this problem to his attention
many years ago.

APPENDIX

Displayed here are some properties of deter-
minants which proved useful in the analysis earried
out in the text. Of particular importance is the
Jacobi ratio theorem.®

Theorem: If (a,;) i1s a square matrix with de-
terminant

[adj (@ )] = L** X adj™® (as,),

where adj (a,;) is the (adjugate) matrix obtained

by replacing the elements of (a,;) by their cofactors

Vi in L, [adj (a;)]" is the kth compound’ of
7 Reference 6, p. 90.

then (A1)

A. MORROW

adj (a,;) and adj™ (a;;) is the kth adjugate com-
pound’ of (a;;).

In the case k=2 it is easy to show that the diagonal
elements of adj*™ (a.;) are, in the notation of the
text, simply L,;. Noting that adj (a;) = (Vi)
the diagonal elements of (A1) give
Vie Vi
Vi Vi
or since V,;; = L; and (a,;) of the text is symmetric

LiL; — L;L — V5 (A2)

Another valuable equation results from an ex-

pansion of L due to Cauchy®

i e = Ei V() aa:a: + Liay;-

T

= LLy,

(A3)

But by an expansion in terms of elements of the
ith row (or column)

L = E V{,’aii B Ljair"

iy
Equating these two expressions for L yields
Vig = — E V(iaa

kot §

=Ns Z V(D uan — Liay

ked,§
= Vi —
where V,;, is V,; evaluated at a;; = 0.
This expression may be substituted into (A2)
yielding

L;;ay;,

IJ ] Aa’.',' + Bﬂ” + C,
where
A _Ll‘h B = ZV.','u, C= (L,-L,- —

Solving this quadratic equation gives

Vii)/Li;.

@i = [V &= (LLYN/Li; = aii(£), (Ad)
which allows L to be written as
L = —Lylai; — ay(H)la; — ai(—)]. (A5)

In the text the asymptotic form of L = 0 in the
@5 — as plane is desired. This is simply obtained
from (A3) by retaining only the leading terms in
these variables:

L ~ —Lai; — 2V (3) 14013034

Assuming the coefficients to be nonvanishing, this
can be equated to zero and solved, using [V (3).,]" —
LmLu L —LlaqLa, to thﬂ-in

Gy = a;[— V(3 £ (’“LlsnLa)']/Lau (Aﬁ)
where L3, = 2t. Thus, with Ly > 0, if ¢ is negalive,

L = 0 is a hyperbola with asymptotes given by
(A6), while, if t is positive, L, = 0 is an ellipse.

* Reference 6, p. 74.

z -
Lz, —
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It is shown that the off-diagonal matrix elements of an operator on an N-boson space are deter-
mined by diagonal matrix elements in different symmetrized product bases. The motivating applica-
tion is that optical field correlations are determined by moments of the numbers of photons in dif-

ferent modes.

INTRODUCTION

IGHER-order optical coherence has been de-
fined' in terms of expectation values

ai.x) (1)

of normal-ordered products of N annihilation opera-
tors a; and NV creation operators a for a set of modes
1 of the radiation field. An operational interpretation
of this definition has been given® in terms of the
moments

(b7, ()b, @b, @b, - bW, ()  (2)

of order n < N of the probability distribution for
the numbers of photons in different modes r which
are related to the modes ¢ by a unitary transfor-
mation b,(u) = 2. u.a;. The interpretation is
equivalent to the definition if the expectation values
(1) are determined when the moments (2) are known
for various choices of the unitary matrix % which
specifies the modes r. The moments (2) determine
the expectation values

(b:,(u}b:.(u) e b:,.(u)b,,(u)b,,(u) coe by () (3)

of normal-ordered products of N annihilation opera-
tors b, paired with the N creation operators b} for
the same modes. The theorem proved in this paper
shows how the expectation values (1) are determined
from the expectation values (3). A set of unitary
matrices u is constructed to demonstrate this ex-
plicitly for a simple example.

_—

tot t
(@6.8:, * 0 Binliny,Biyy, =
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! R. J. Glauber, Phys. Rev. 130, 2529 (1963).

*T. F. Jordan, Helv. Phys. Acta 37, 607 (1064),

THEOREM

Consider M operators a, and their adjoints a;
satisfying the commutation relations

t t
@i — Qi == O4j,

a.a; — a;a; = 0,

for¢, 7 = 1,2, ---, M. For each M X M unitary

matrix u let

b, (u) = iu,.-a.-.

=1

M
bi(u) = 3 ukai
i=1
forr = 1,2, --- , M. For any quantum-mechanical
state (normalized, positive linear functional) of this
system we prove the following,

Theorem: The {(N + M — DYN(M — D!}*
expectation values

t 1 t
(anaix iy Qi Ry, Qi)
with the ¢'s taking all values 1, 2, .-+ , M, are

determined when a suitably chosen expectation value
(b7, (b7, () -+ - b, @Wb,,a)b,,0) -+ byy())

of paired annihilation and creation operators is deter-
mined for each of {(N 4+ M — 1)I/N!(M — 1)!}*
suitably chosen unitary matrices u.

Let ¢ = 1, 2, --- , M label an orthonormal set
of state vectors |7) for a single boson, and construct
symmetrized product state vectors for N identical
bosons as sums

|9y, 22, - -

iy = ; i) [ia) -+ liw) (4
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over all N! permutations P of ¢, 7, ---

D(w) [iu T2, “** 4 Iy}
M

- B g

Fasdarecine=1

3 ’f_v. Lct

i Wisis " WUinin Ull jl: n J\‘)
define a unitary operator D(u) on the symmetric
N-boson state vectors for each M X M unitary
matrix u operating on the single-boson state vectors.
Let T be an operator on the space of symmetric

N-boson state vectors. By considering
fay)

t
iyQin Qigy, " °

(ila 1'-2: . 1—\| il ii.\'-c-n 7:.\-‘+2; k)

Qion)s

one can see that the above theorem is implied by the
following.

Theorem: The {(N + M — 1)I/N{(M — 1)!}*
matrix elements

¢ f
= {a;a;, *+*

('in iz; ane 'i‘vl T li.\'ﬂg i.\'q-z, S im\-‘)

with the ¢’s taking all values 1, 2, - -+, M, are deter-
mined when a suitably chosen diagonal matrix ele-
ment

(&, %2, +++ , tn| DT D) |iy, s, *
is determined for each of
(N + M — DYNIM — D)Y)?

3 i.\’)

suitably chosen unitary matrices u.

We prove the theorem in the latter form. First
we tidy up the notation. Let {7} denote the set of
indices ¢,, 7., - -+ , iy. The state vectors (4) are not
normalized to unity. Let |{7]) denote the same state
vectors multiplied by positive numbers so that they
are normalized to unity. They form an orthonormal
set in the space of symmetric N-boson state vectors.
Let summation over {7} denote summation over
this orthonormal set. Let

Dy;y0() = ({i}| D@w) |{i})

denote the matrix elements of the unitary operators
D(u). These unitary matrices form the irreducible
unitary Nth-rank symmetric covariant tensor rep-
resentation of the group Uy of M X M unitary
matrices %.”® Call this representation R.

Our goal is to determine the matrix elements

(T |k} ®)

3 H. Weyl, The Theory of Groups and Quantum Mechanices,
translated by H. P. Robertson (Dover Publications, Inc.,
New York, 1950).

. * M. Hamermesh, Group Theory (Addison-Wesley Pub-
lmhmT Company, Inec., Reading, Massachusetts, 1962).

& I1. Boerner, Representations of Groups (North-ITolland

Publishing Company, Amsterdam, 1963).
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from functions
- t 5

(i} D ()T D(u) |l2})

= 2 DhuaDuaa)ii}| T 1K) (©)

[7ilik)

of the M X M unitary matrices w. The matrices
D¥, ., ,(w) form the irreducible unitary Nth-rank
symmetric contravariant tensor representation of
U, which is the complex conjugate representation
R of the representation R.' The product representa-
tion B &) R is reducible as a sum

Dy () D oy (u0)
= ; E Af: Cﬁ'ff,:,,,Cﬁ',’,‘q..,,D,ﬂ,(u) (7

of irreducible unitary representations D*(u) of Uy
labeled by S with CF&5  the Clebsch-Gordan coef-
ficients for U,.* Substituting (7) in (6) gives

({i}| D'W)T D) |{i})
- ;:: n%: <{j} I o “kl)C‘E”ff".’“ ; Clkt";(silbl?‘ﬂ(u). (8)

In the Appendix it is shown that £ & R is simply
reducible; the irreducible representations labeled by
S in the reduction (7) are all mutually inequivalent,.
Hence the unitary matrix elements D.J(u) in (7)
satisfy the orthogonality relations®*

[ du D@y Do) = Bos b b

in terms of the invariant integral on the group U,.'
It follows that the functions |

L]
Ers

bE nnanfa(u) (9).‘

in (8) satisfy the orthogonality relations
f du | Z CF;TIS.'H D(u)}* | hz: C'f-‘.’ff;,b- Dy (w)}
: :

Ers |2
= f55' Ouar Z IC[nH]bl ’
b

which show that, for fixed {#}, and for values of:
S such that '

¥, 1ol (10)

b

is not zero, the functions (9) are linearly independen
funections on Uy for different S and a. In the A
pendix it is shown that for each S in the reductio
(7) of R X R there is at least one {¢} such that (10}
is not zero.

Consider one S in the reduction (7), and choos
{7} such that (10) is not zero for that S. Now kee
{7} fixed and consider the set of all S for which (10
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« ot zero. For these S the functions (9) are linearly
independent for different S, @ and span a linear

ee of functions on U, which contains the func-
hﬂn (8) for this fixed {7]. The dimension of this

ce is equal to the number of values of S, a with
§ in the set for which (10) is not zero. When the
function (8) is determined for each of the same num-
ber of suitably chosen M X M unitary matrices u,
the coefficients

E (131 T 1 R)CES e

of the linearly independent functions (9) are deter-
mined for this set of values of S and all of the as-
sociated values of a. If there is an S which was not
included, then choose another {7z} such that (10) is
not zero for this S and, keeping this {7} fixed, con-
gider the set of all S which were not included in the
previous considerations and for which (10) is not
gero. For these S and this fixed {7}, the functions
(9) span a linear space of functions on U, which
contains the terms of the function (8) which were
not determined previously. The dimension of this
space is equal to the number of values of 8, a cor-
responding to newly considered values of S. When
the function (8) is determined for this number of
suitably chosen unitary matrices u, the coefficients
(11) of the linearly independent functions (9) are
determined for these new values of S and all of the
associated values of a. Repeat this procedure until
the coefficients (11) are determined for all 8, a. The
total number of M X M unitary matrices u required
is equal to the total number of values of S, a. This
is the dimension of the product representation £ X R
which is the same as the square of the dimension of
the representation R which is (see Appendix)

{((N+ M - 1DYNI(M — 1)!)°.

Multiplying (11) by CF%5 and summing over S, a,
using the orthogonality property

Z(.Ens- vERS = 5 5
AR e L ke T Qi) Otk ik
8.8

(11)

of the Clebsch-Gordan coefficients,® yields the
matrix elements (5). This completes the proof of the
theorem.

EXAMPLE

There are many different suitable choices for the
M X M unitary matrices u. One just needs to avoid
the relatively few choices for which the linear in-
dependence of the functions D] (u) fails.

For the case M = 2, N = 2, we exhibit explicitly
nine 2 X 2 unitary matrices u and expectation values

851
(3) which determine the nine expectation values (1).
First we take
_ cos § sin @

l-—sin 8 cos GJ ,
(ba()bi(20) by () by (1))

= {(maja,a,) cos' 0 + (aiasa,a.) sin' @

+ (4{ajaya,a,) + (ajalaza.) + (aiaia,a,)) cos® Gsin® 6

+ 2((ajaia,a.) + (alaim.a,)) cos® Osin 6

+ 2((ajaja.a;) + (aiaia,a,) cos 0sin® 0

for five different values of 8 which allow us to deter-
mine the terms with different dependence on #. Next
we take
cos # isin 6]

E

cos 0

isin 0
(b1(4)b{() b, () b, (w))
= (ajaja,a,) cos' 8 + (aiaia,a,) sin® @
+ (4(ajara,a,) — (aia,0.0,) — {asasa,a,)) cos® Osin® 8
+ 2i({ajaia,a.) — (ajaia,a,)) cos® §sin 6
+ 2i((ata;a,a,) - (a;a;a,az)) cos 6 sin® 6.

Here three suitably chosen values of 6 are sufficient
to determine the terms with different dependence
on 8, since the first two terms were determined
previously. Finally we take

1 e-‘ v/
1 _el'r/-l} :
(b1 by(w)b, (W)by(w)) = Halma,a,) + Hasasauas)

. . | Tt t
— H((a,a,a:0:) — (a.a:a,a,)),

. . . t _t
which gives us enough to determine all {(a;, a;,a;,a;,
for i), 14, 73, 2. = 1, 2. Altogether we have used nine
2 X 2 unitary matrices u.
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APPENDIX

In order to prove the statements made in this
paper regarding representations of unitary groups,
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we recall some relevant facts concerning these

groups. The group Ux(SU,) is the group of all

M X M unitary (unimodular unitary) matrices

u;;. A covariant tensor of rank N transforms under

either group as
A

Diiooin=> ;_ Uisse **° Yiwtud baosoin (A1)

fareriN=1

while a contravariant tensor of rank N transforms as
M

Ti.."i”—l' Z

facrcin=1

ula, o uln T (A2)
A mixed tensor has both types of indices. A trace
is_taken by setting a covariant and contravariant
index equal and summing from one to M.
Inequivalent irreducible unitary representations
of, Uy are generated from tensors as follows. If a

tensor
T

is covariant of rank N and contravariant of rank N’,
if it has a definite permutation symmetry for the
covariant and contravariant indices separately, and
if it is traceless, then it is an irreducible tensor. To
obtain the representation in explicit unitary form,
one has to choose appropriate orthonormal linear
combinations of the tensor components.

For our purposes it is more convenient to consider
the group SU, for which there are two completely,
antisymmetric invariant tensors e;,...., and ¢'"""1¥
of covariant and contravariant ranks M, respectively,
with

€1,3, M = EI'L'"“ =],

With these one can convert a contravariant index
into M — 1 covariant indices, and vice versa. One
then needs to consider only tensors of covariant
type. Irreducible representations of SU, are gen-
erated by covariant tensors whose indices possess
definite permutation symmetry. The symmetry type
can be specified by giving a set of M integers
fi = fa = -+« fau = 0, which are the numbers of
boxes in the rows of the Young diagram.*® The
rank of the tensorisf, + f; - - - <+ f. The irreducible

representation is denoted by (f, f., -+« fa). Its
dimension is*™*
d(!h fﬂx T fﬂf)

= D(f1+f" — l,jz'i—ﬂ{—?, et f_w) (:\3)

DM —1,M -2, -+ 1, 0) '

where

ax) = II (a: — a).

i<k=1l

D(a,, a,, ---

N. MUKUNDA AND T. F. JORDAN

The irreducible representation of U, given by
symmetric covariant tensors of rank N, which we
have called R, is the representation (¥, 0, --- , 0)

of SUu. The complex conjugate representation R
is (N, N, ---, N, 0). Their dimensions are

d(N, O, --- ,0) =d(N:N: ,N,O)
=N+M-DYNI M- 1. (A4)

Let T.,..., and V¥ be two irreducible sym-
metric tensors corresponding to the representations
R and R respectively. The product representation
R & R is given by the mixed (reducible) tensor

WEoaE e PSP e (A5)
By considering the mixed tensor
M
SEiE= 30 WRLTESNOUEE (A

kyccky—g=1

obtained from (A5) by contracting N — S pairs of
indices, and making it traceless, we see that the
representation £ () R contains, at least’ once, the
irreducible representation corresponding to a mixed
tensor of covariant and contravariant rank S, sym-
metric in both kinds of indices. Here S can take the
values 0, 1, - -+ , N, For different S these representa-
tions are inequivalent. Converting all contravariant
indices in (A6) into covariant indices, we find that
these are the representations (28, S, ---, S, 0) of
SU y. Their dimensions are

d(2s, S, --- §,0)

@S+ M-—1)[(S+ M —2N
e~ {S!(M——Z)!}' a7

This can be rearranged to show that
d2s, 8, ---,8,0) =d(S,0,---,0)°
—-diS—-1,0---,0?

(A8)

for § = 1, 2, --- , N. Summing (A8) over S, we
have that ;
d(N,0, .- 07 = > d(28,8, -, 850. (A9

S=0

Since the left-hand side of (A9) is just the dimensi
of the representation B X R, we see that B ®
contains just once each of the irreducible represen
tions corresponding to S = 0, 1, - - - , N and contai
no other irreducible representations. This proves tha
R @ R is simply reducible.

Next we examine the Clebsch-Gordan coefficien

C#as (AIO

(d)lilby
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which appear in (10). We denote the orthonormal
pasis vectors of the representations R and E by
B, {k}) and |R, {i}) respectively. The product
vectors

IR, {3}) |R, {k}) (A1L)

are an orthonormal basis for the representation
B ® R. Consider .the subset of these for which
{i} = {k}. Their expansions in terms of the ortho-
pormal basis vectors |S, b) of the irreducible rep-
resentations

IR, {i}) IR, {i}) = ; Ciitos 18, 0)  (A12)

define the coefficients (A10).

Consider elements of the group SUy correspond-

ing to M X M diagonal unitary matrices
Uy = Bpe”™,

(A13)

where z; are real numbers such that

(mod 27).

CORRELATIONS 853
From (A1) and (A2) we see that under these trans-
formations each component of a tensor gets multi-
plied by a phase factor. Of the product vectors
(A11), only those for which {{} = [k}, namely the
vectors (A12), are left invariant. We can show that,
in every irreducible representation contained in
R @ R, there is at least one vector which is invariant
under the phase transformations induced by the
diagonal unitary matrices (A13). For, every such
representation corresponds to a mixed tensor (A6)
with the same number S of covariant and con-
travariant indices, and all components of the form
-

are invariant. In fact, the dimension of the subspace
of invariant vectors is (S 4+ M — 2)I/SI(M — 2)1.
This shows that the subspace of the representa-
tion B & R spanned by the vectors (A12) has a
nonempty intersection with the subspace of each
irreducible representation. This means that for each
irreducible representation S there is at least one

{7} and one b such that (A10) is not zero, or one
{7} such that (10) is not zero.

(no sum!)
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An extension of the ray representation theory is formulated to embrace nonunitary groups. The
coray representations are obtained by the ray representations of its unitary subgroup. Theorems of
coray representations are stated. The usefulness of the formalism is discussed.

1. INTRODUCTION

NTEREST in the theory of ray representations
of finite unitary groups has existed almost
since their inception,' and persists to the present
time,* and there have been numerous physical
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applications.”™® The introduction of time reversal
as one of the basic symmetry elements resulted
in the concept of nonunitary groups—a hybrid
group which contains unitary, and antiunitary
elements. Wigner’s classic realization of such groups
in terms of the theory of corepresentations is well

& P. Rudra, J. Math. Phys. 6, 1278 El%5).
¢ E. Brown, Phys. Rev. 133, A1038 196-13.
® ML :iax, “Symmetry Principles in Solid State Physics"
reprint).
8 0. V. Kovalyev, Soviet Phys.—Solid State, 5, 3157, 3164
(1963); Phys. Metals Metallog. (USSR) 17, 490 (1964).
¥ J. Zak, Phys. Rev. 134, A1602, A1607 (1964).



OPTICAL FIELD

which appear in (10). We denote the orthonormal
pasis vectors of the representations R and E by
B, {k}) and |R, {i}) respectively. The product
vectors

IR, {3}) |R, {k}) (A1L)

are an orthonormal basis for the representation
B ® R. Consider .the subset of these for which
{i} = {k}. Their expansions in terms of the ortho-
pormal basis vectors |S, b) of the irreducible rep-
resentations

IR, {i}) IR, {i}) = ; Ciitos 18, 0)  (A12)

define the coefficients (A10).

Consider elements of the group SUy correspond-

ing to M X M diagonal unitary matrices
Uy = Bpe”™,

(A13)

where z; are real numbers such that

(mod 27).

CORRELATIONS 853
From (A1) and (A2) we see that under these trans-
formations each component of a tensor gets multi-
plied by a phase factor. Of the product vectors
(A11), only those for which {{} = [k}, namely the
vectors (A12), are left invariant. We can show that,
in every irreducible representation contained in
R @ R, there is at least one vector which is invariant
under the phase transformations induced by the
diagonal unitary matrices (A13). For, every such
representation corresponds to a mixed tensor (A6)
with the same number S of covariant and con-
travariant indices, and all components of the form
-

are invariant. In fact, the dimension of the subspace
of invariant vectors is (S 4+ M — 2)I/SI(M — 2)1.
This shows that the subspace of the representa-
tion B & R spanned by the vectors (A12) has a
nonempty intersection with the subspace of each
irreducible representation. This means that for each
irreducible representation S there is at least one

{7} and one b such that (A10) is not zero, or one
{7} such that (10) is not zero.

(no sum!)

JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 7, NUMBER 5 MAY 1966

Ray Representations of Finite Nonunitary Groups

M. V. MurTaY*

Saha Institute of Nuclear Physics, Calcutta, India
(Received 15 November 1965)

An extension of the ray representation theory is formulated to embrace nonunitary groups. The
coray representations are obtained by the ray representations of its unitary subgroup. Theorems of
coray representations are stated. The usefulness of the formalism is discussed.

1. INTRODUCTION

NTEREST in the theory of ray representations
of finite unitary groups has existed almost
since their inception,' and persists to the present
time,* and there have been numerous physical

—

* Junior D.A.E. Fellow.

1], Schur, J. Reine Angew. Math, 127, 20 (1904); 132, 85
(1907); 139, 155 (1911).

* P.'Rudra, J. Math. Phys. 6, 1273 (1965).

0. V. Kovalyev, Irreducible Representations of Space
Grougs (Kiev, 1961), in Russian.

4 0. V. Kovalyev, and G. Ya. Lubarskii, Soviet Phys.—
Tech. Phys. 28, 1151 (1958).

applications.”™® The introduction of time reversal
as one of the basic symmetry elements resulted
in the concept of nonunitary groups—a hybrid
group which contains unitary, and antiunitary
elements. Wigner’s classic realization of such groups
in terms of the theory of corepresentations is well

& P. Rudra, J. Math. Phys. 6, 1278 El%5).
¢ E. Brown, Phys. Rev. 133, A1038 196-13.
® ML :iax, “Symmetry Principles in Solid State Physics"
reprint).
8 0. V. Kovalyev, Soviet Phys.—Solid State, 5, 3157, 3164
(1963); Phys. Metals Metallog. (USSR) 17, 490 (1964).
¥ J. Zak, Phys. Rev. 134, A1602, A1607 (1964).



854 M. V.

known.””"** Tt is our purpose to present a coherent
and useful formalism in which the basic ideas of
ray representation theory are incorporated into
nonunitary groups. Section 2 surveys the principal
definitions and results. Section 3 presents the new
formalism of coray representations.'* Section 4
indicates a way to use them. Section 5 discusses
the utility of the theory.

2. PRINCIPAL DEFINITIONS AND RESULTS

The state function of a physical system is repre-
sented more generally by a ray representating a
direction in complex Hilbert space.'* If ¥ is a
vector corresponding to a physically realizable
state, then ¥ and a constant multiple of ¥ repre-
sent one and the same state. However, when the
states are normalized, a phase factor of modulus
one remains undetermined, and the two veetors
which differ by such a phase factor represent the
same state. Now, if G is the symmetric group of
the physical system, the operators ¢ & ¢ act on
rays in Hilbert space only to map rays into rays
(i.e., take from one possible state to another).
Therefore we require that the matrices D(g) realize
the ray representation of the group G if they satisfy

D(g,)D(gz) = w,,,0.0(gs) for

where w,, ,, is a phase factor depending on g, and g,
of modulus unity. If ® and ¥ are state functions of
a system invariant under the operafions of @, the
elements of the group ¢ are unitary or antiunitary
if they satisfy

(g, g®)

T1f2 = (3, 1)

(¥, ¥) @)
or

(g%, g®) = (2, ¥) = (¥, )*. 3)

We denote u for unitary and e for antiunitary
operators, respectively. If ® is expanded in terms
of the eigenstates of the system, the linear and
the antilinear property of the unitary and antiunitary
operators, respectively, becomes evident:

10 E. P. Wigner, J. Math. Phys. 1, 409, 414 (1960).

n K, P. Wigner, Group Theory and its Application to the
Quantum M echanics of Atomic Spectra (Academic Press Inc.,
New York, 1959).

12 J. O. Dimmock, J. Math. Phys. 4, 1307 (1963).

13 Wigner coined the word corepresentations for the vector
representations of nonunitary groups. It is felt suggestive to
use the terminology of coray representations (or projective
corepresentations) to represent the ray representations of
nonunitary groups.

14 M. Hamermesh, Group Theory and its Applicalion to
Physical Problems (Addison-Wesley Publishing Company,
Inc., Reading, Massachusetts, 1962), Chap. 12, p. 458

MURTHY

¢ = E aafbu, ud = Z amuqsar
“ ‘ )

ad = E atag,.

Equation (1) provides the transformation rule for
linear operators; its only new feature is the ap-
pearance of a unimodular phase factor. However,
when the symmetric group under consideration
contains some elements with the time reversal
operator in combination with other geometrical
operators, the structure of the group becomes non-
unitary made up of unitary and antiunitary opera-
tors. Further, it is convienient to express the anti-
unitary operators as a = V#; V being unitary and
6 being antiunitary time reversal. It is easily demon-
strated that the product of two unitary, or two
antiunitary ones is unitary, and the product of an
antiunitary operator and a unitary is antiunitary
with the consequence, that the nonunitary group
contains equal number of unitary and antiunitary
operators. The unitary operators form an invariant
subgroup of index two. '

Let ¥} be the ath basis function of the 7th ir-
reducible corepresentation of G. Following Wigner
and adopting the summation convention, we write
the corepresentation matrices as the following:

wl’,
al!,

D"(u),g,.‘lf;.
D‘(&)ﬂa‘l’;.

©)

Using the above relation, one arrives at the follow-
ing multiplicative structure of the corepresentations:

D'(u) D' (us) = D'(uus),
D'w)D'(a) = D'(ua), ©)
DY (a)D'(w* = D'(au),

Di(a,)D(a,)* = D'(m.a.),

and the equivalence of two corepresentations, by
means of similarity transformation, is given by

Biw) =
Bi(a) =

V'D'wV,

.
VD) V*, |

|

1

q

where V is the transforming matrix.

3. DETERMINATION OF CORAY
REPRESENTATIONS FROM THE RAY
REPRESENTATIONS OF ITS UNITARY SUBGROUP,

In view of the arguments put forward in Sec. 2,j
we assume that the matrices D'(g)(g & () realize
the coray representation of the group G if
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D'(,)D'(uy) = w,, ., D' (wyus),
D'(w)D'(a) = w, .D'(ua),
D'(a)D'(w* = w,..D(au),

D'(a)D'(az)* = w,,..,D'(wa2),

where the factor system w,, ,, satisfies the following
functional relationship according to the ray repre-
sentation theory'":

(8)

Wi 0, Wugy 00 = Du,010:%Wa0.040 (‘])

* = *
Wa, o Wapy .00 = Wa,010:Wo1,04°

The vector representations of nonunitary groups
are determined by the vector representations of its
unitary subgroup. In an analogous way, the ray
representations of nonunitary groups are obtained
from the ray representations of its unitary sub-
group obeying (8).

Avoiding repetition of arguments, we summarize
the new results obtained. Closely following Wigner’s
analysis,'"" we denote by A'(u) the irreducible ray
representation of the unitary subgroup H. In fact,
Wa, s in Eq. (8) represents the factor system de-
termining the irreducible ray representations of H.
We denote by A’(u) another ray representation of H,

(10)

A') = w,,00% 0010 A" (05 'Ua),

where a, is some antiunitary operator.

To determine the coray representation matrices
D(a), we begin with a set of functions forming a
basis for the irreducible representation A*(u)
u€c H. (11)

The nonunitary group G is given in terms of H as

G =H+ aH.

wlbi, = A'(u)z. ¥, forall

Accordingly, in the process of induction, the coray
representations ) of the group (¢ are obtained
from the ray representations A* in one of the three
following ways.

If for all @, € G the representations A* and A’
are equivalent, then

x[a'()] = x[a"()]
and
Alw) = gAY (u)B,
which defines 8, a unitary matrix satisfying
B8* = zw.,.,A"(as).
% The e;ements g, u and a used in this relation correspond

to any general element, the unitary, and the antiunitary
element, respectively.

(12)

The positive and negative signs appearing in (12)
correspond fo two different cases.

Case (a):

If B8* = w,,..,A"(a}).

Refering to (11), a, ¥} reproduces the set of
function ¥;. Hence the coray representation D'(g)
of ( corresponds to a single irreducible ray repre-
sentation A'(u) of H and is of the same dimention-
ality given by

D'(w) = A'(u);
Case (b):

If, on the other hand, 88* = —w,, ,,A'(ad), a, ¥/
gives rise to a set of functions ¢, but, however,
forms a basis for A'(u) of H. D*(g) again corresponds

to a single irreducible ray representation of twice
the dimensionality

D'(a) = was-+.0.A'(aag")B.  (13)

D'(y) = a0 ] ;
0 A'(u)
i - 0 Whae=1, a0 A'(a“u_l)ﬂ
e = (—w::;.v..,, Aaaz")B 0 )

(14)
Case (c):
If for some antiunitary operator @, the repre-
sentation A'(x) and A’(u) are nonequivalent, i.e.,
x[A'(0)] # x[A'(w)],

a¥ . gives rise to ¢, which acts as a basis for A'(u)
of H inequivalent to A'(w). The coray represen-
tations are given by

( 3

Dy = [AW 0}
l 0 Al
D'(a) = j 0 or 0. A (005)] _
U0 S (- Pa) 0o |

(15)
One could distinguish the three cases (a), (b),
and (¢) mentioned above by using the modified

relation
no=2/n 20 x'(€)w.a (16)

3
where n 1s the order of the group, the factor 2/n
represents the elements in H, and x(a”) = x(u) is
the character of .

In (16) m takes the three values 0, 1. The
value equal to zero distinguishes case (¢) from those
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of (a) and (b), which are represented by 41 and
—1, respectively, thereby serving as a useful rule.

The antiunitary operators can, however, be
written as the product of unitary operators V with
an antiunitary operator @ like the time reversal

where I is the identity operator, and
e = (=17,

N being the number of fermions in the system.
Equation (16) could be transformed to represent
the three cases as follows

‘ExIA‘(uf)]wu... =en

(17)

This result agrees well with the Frobenius-Schur
criterion.®

The theorems leading up to the orthogonality
relations for the irreducible representations of a

group are here extended for coray representations.

Theorem 1: Any coray representation by non-
singular matrices is equivalent to one by unitary
matrices. The proof of this theorem is identical
to that for unitary groups,'' and we only remark here
that the coray representations will be unitary if the
basis functions from an orthonormal set. Since
any linearly independent set of functions can al-
ways be transformed into an orthonormal set, we
can choose unitary matrices irrespective of whether
the group in question is unitary or not.

Theorem 2: If there exists a Hermitian matrix
M such that

MD'w) = DM,
MD'(a) = D'(QM*,

for all the matrices of an irreducible coray repre-
sentation, then M is a constant matrix, otherwise it is
reducible. The first part of the proof is again identical
to that given for unitary groups, and the second
part of the proof differs from that given for unitary
groups because of the appearence of the star, one
could nevertheless proceed as in the case of corep-
resentations.

Theorem 3: If D and D' are two irreducible
coray representations of the same group and of

18 G. Frobenius and I. Schur, 8. Sitzber. Deutsch. Akad.
Wiss. 49, 136 (1906).
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dimensionality I and I, respectively, and if there
exists an (I X 1) matrix X such that

XD'(w) = D'W)X,
XD'(a) = D'(a)X*,
then, for
I s

(X is a null matrix), the representations are equiva-
lent. The proof is again identical with that of vector
representations."

Theorem 4: For two inequivalent irreducible

unitary coray representations D* and D'

j,: D' () ay D'(wi)s, = 0,
22 DY(@)an D@}, = 0.

For the elements of the single unitary corepresenta-
tion, we have

> (D) aw D@ + D(a)ar D@k}

k

= n/l 5,,3 8,,,

where n is the number of operators in G and [ is the
dimension of D°. The theorem has been stated in
such way as to incorporate the ray representation
aspect of nonunitary groups. The proofs of or-
thogonality relation for irreducible ray representa-
tions® and corepresentations are well known'? and
this suffices as a proof for the above theorem.

4. DETERMINATION OF FACTOR SYSTEMS

The determination of the factor systems for a
particular group depends on the physical problem
in question. In crystallographic space groups, these
factor systems arise as a result of the existence
of nonprimitive translations, associated with screw
axes and glide planes. The methad of obtaining the
representations of a space group based on the
concept of the Brillouin zone is very well known.'”
The different inequivalent points k; on the Bril-
louin zone correspond to different subgroups Gy,
furnishing an irreducible representation of the space
group. Following a development due to Lubarskii*
we obtain expressions for the factor systems of the
coray representations of magnetic groups. If {t | g}

17 G. F. Koster, Solid State Physics, 5, 174 (1957).
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is a nonprimitive translation associated with point
operation g, then
_ ilkstut—t))

TRE : (18)
ma" - el'(k'(wl-l-l)],
where « corresponds to the unitary operation in
the antiunitary operators. It is easily seen that the
second relation in (18) is due to the presence of
antiunitary elements such as antiscrews and anti-
glides in the case of a magnetic group.'® It is interest-
ing to see that the w's become unity when the ex-
ponent in (18) takes the value 0 or approaches 2.
The first case corresponds to a situation when
vector k itself is zero corresponding to the special
point T of the Brillouin zone. In the second case
there exists no nonprimitive translation corre-
sponging to any point operation of the group G..
Lastly, when the element in Gy does not change k
to an equivalent point, i.e., if no two points repre-
sented by k are equivalent, then the w’s take the
value unity. This does happen when k lies completely
within the zone.

If the spin orbit interaction is involved in the
physical system, the representations of the sym-
metric group of the system transform as the ray
representations. Consider a nonunitary group, the
unitary operation that enters into the antiunitary
operator a has the form v = Ka, where K denotes the
general operator of complex conjugation. Making use
of one of the Pauli matrices o,, one could represent
v = —Ko,a, a case in which the spin orbit inter-
action is taken into account. Without the use of
double groups it is often more convenient to consider
as before a simple group with a different factor
system. This factor system could be represented
in the form of the product of the factor system in
(18) and that corresponding part depending on the
representations of the point group w,, ,, determined
as follows. Each element u is compared with one

18 M. Atoji, Am. J. Phys., 33, 212 (1965).
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of the two matrices D!(u) and each element a=Ka,u
with D¥(a) = Ko,D'(u), then the factur system
Wy, .0, 18 Obtained from the equations

D‘(gl) Di(gl) A wu-‘n. [)l(glgﬂ)

5. DISCUSSION

(19)

The formalism presented here was motivated by
the problem of representation of nonsymmorphic
magnetic groups, in which glide planes and screws
axes and their corresponding antielements exist.
The theory therefore finds wide applicability for
magnetic structures answering all physical questions
based on symmetry of time and space. Summarizing
the results of earlier investigations, (which in fact
follows as special cases) it gives a general method
of representation of crystallographic groups (unitary,
nonunitary, symmorphic, and nonsymmorphic). In
fact, the factor systems are incorporated to take
care of the nonsymmorphic aspect of unitary and
nonunitary groups.

The method of double group often used 4o achieve
a similar objective'® or when spin orbit interaction
is taken into account is rather artificial and cumber-
some. One could avoid in this case the construction
of a covering group by considering a much simpler
group with a different factor system. An applica-
tion of this method to the problem of phase transi-
tions, and energy band structures in magnetic
crystals will be illustrated in the forthcoming
papers.
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Using the covariant spinor formalism for higher-spin particles, it is shown that the only combination
of the internal symmetry group and the Lorentz group that is compatible with the unitarity condition
is the direct product. Three theorems are proved which severely limit the type of symmetries that are

consistent with the unitarity condition.

I. INTRODUCTION

T has often been emphasized that it is difficult

to find an example of a model theory where
SU(6) or related theories and the Poincaré group
are simultaneously exact symmetries.' The clash
between the Poincaré group and SU(6) lies in the
fact that one cannot construct a kinetie energy
term for a Lagrangian field theory which is invariant
under SU(6).! This fact manifests itself in the
following three related ways:

(a) The commutation or anticommutation rela-
tions between field operators.

(b) The unitarity relations between physical S
matrix elements.

(¢) The equations of motion of off-the-mass-shell
Green’s functions.

We would like to point out that, under a certain
class of groups, invariance of the unitarity condition
limits one to consider the direct product of the
Lorentz group and the internal symmetry group,
and some trivial extensions as a possible symmetry
group. Several examples of the conflict of SU(6)
or related theories and the unitarity condition have
been given in the literature;* however, most of the
demonstrations have been confined to some definite
proecess or model. Therefore, we feel that it is useful
to turn the argument around and give a general
discussion to see what possible symmetries are
allowed by the invariance of the unitarity condition.

In Sec. IT we prove a set of results that greatly
limits the type of symmetries one can consider for

* Supported by the U. 8. Atomic Energy Commission
under contract AT (45-1)-1388, Program B.

1 There are many places where this is pointed out. M. A. B.
Beg and A Pais, Phys. Rev. 133, B1514 (1965); ibid. 138, B692
(1965); also K. Bardakei, J. M. Cornwall, P. Freund, and
B. W. Lee. Phys. Rev. Letters 13, 698 (1964). In fact 8.
Coleman in a Harvard University preprint has suggested that
it is impossible to make a relativistic SU(6). For further
literature on SU(6) see any of the above papers.

2 M. A. B. Beg and A. Pais, Phys. Rev. Letters 14, 509
(1965); J. M. Cornwall, P. G. O. Freund, and K. T. Mahan-

thappa, ibid. 515; and R. Blankenbeder, M. L. Goldberger,
K. Johnson, and 8. B. Treiman, ¢bid. 518,

the unitarity condition. We assume the -eclastic
unitarity condition and a certain class of semi-
simple Lie groups; we could of course also consider
(a) or (¢) for the proof. The amplitudes for higher
spin® and the covariant spinor formalism are used.
Finally, it is conjectured that, as far as strong in-
teractions are concerned, the results found here and
elsewhere do not make SU(6) or related theories use-
less. Merely the interpretation of SU(6) as an exact
symmetry of a relativistic theory is not possible.

II. KINEMATIC PRELIMINARIES

We begin by giving some kinematic and group
theoretic preliminaries. We consider the relativistic
scattering amplitude to be given by the covariant
spinor amplitude which has the following simple
transformation properties under the homogeneous
Lorentz group:

M 4P, P)
= D ()3 D" (9 Murs (AP, A@P). (D)

Here P’ and P refer respectively to the set of out-
going and incoming momenta; all conventions are
identical to those of Ref. 4. The quantity g is an
element, of the group SL(2, €) (covering group of
the Lorentz group); A(g) and D(g) are, respectively,
representations of the group SL(2, €C) on four
vectors and spinors. The number of such matrices
D(g) in Eq. (1) will be determined by the number of
particles with spin. :

Under elements of the inhomogeneous Lorentsz
group (Poincaré group), the spinor amplitude trans-
forms as follows.

M. (P, P) = exp G[P'(g) — P(g)]-@)D" " ()"
X D (g)s M .5 (P'(9), Plg)),

3 For discussions of the covariant spinor amplitudes see,
for example, A. O. Barut, I. J. Muzinich, and David Williams,
Phys. Rev. 130, 442 (1963); S. Weinberg, Phys. Rev. 133,
B1318 (1964); and 134, BSS2 (1964).

4+ A. O. Barut, I. J. Muzinich, and David Williams, Phys.
Rev. 130, 442 (1963).
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where
P(g) = AMg)P;  P'(g) = A(9P’. (2)

The representations of the Lorentz group on the
spinor amplitudes can be split into spin and space
parts of the form

D(g) ® @. (3)

If we consider the irreducible unitary representa-
tion on physical S matrix elements or states, not
spinor amplitudes, the representations of the Lorentz
group are of the form

Dlu(g, p)] ® ©@. €))

In Eqs. (3) and (4), @ refers to the representation
of the Lorentz group on spacetime, and u(g, P)
is an element of the little group® which, for fixed
timelike momentum, p is isomorphic to the three-
dimensional rotation group SO(3).

The spinor amplitudes provide a natural frame-
work to discuss the transformation properties of
scattering amplitudes because ¢ and @ are com-
pletely decoupled.

The attempts to combine internal symmetry
and the Lorentz group to provide a relativistically
invariant SU(6) fall into one of the following cata-
gories:®

§=GQRe, ()

where G is a semi-simple Lie group with the follow-
ing properties’"’

g2 SL2, ORI,

and @ is the Poincaré group acting on space-time.
Here I is the group of internal symmetry which
we will assume to be compact.

§=GQT. (6)

In Eq. (6) § is semi-simple’ and also contains
SL(2, C) @ I, and T is the translation group in a
vector space of dimension larger than four. The
entire Poincaré group has been redefined in a larger-
dimensional space.” The latter possibility has great

& E. P. Wigner, Ann. Math., 40, 149 (1939).

¢ See L. Michel, Proceedings of the Second Coral Gables
Conference on Symmelry Principles al High Energy (to be
published).

7 A. Salam, R. Delburgo, and T. Strathdee, Proc. Roy.
Soc. (London) A284, 146 (1965).

8 T. Fulton and J. Wess, Phys. Letters 14, 57, 344 (1965);
H. Bacry and J. Nu')lrts, CERN preprint, and W. Ruhl,
CERN preprints on the group SL(6, C) and other authors
that were omitted in this reference. .

? There is yet another approach by using the equal-time
commutation relations of the currents with no intention of
talking about exact symmetries. R. P. Feynmann, M. Gell-
Mann, and G. Zweig, Phys. Rev. Letters 13, 678 (1964); and
R. Dashen (to be published).
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difficulties associated with it; namely, continuous
mass spectra and the physical interpretation of the
additional translation operators. We will not discuss
the latfer possibility here. The first possibility which
has been attempted by Pais and Beg,"* and by
Strathdee, Delburgo, and Salam’ will be considered.

The action of § [Eq. (5)] on the spinor amplitudes
is given by

M(P',P) = M'(P", P)
= DN@M(P', P)[D\@))',  (7a)

where g € GM'(P’, P) is the transformed M func-
tion and D%(g) is a representation of G. We will
assume that G is a good symmetry and the M func-
tion is invariant. The M function transforms under
@ in the following manner:

M(P’, P) = M(AP', AP),

where A € @.

Of course this puts some severe restrictions on
the form of the M function. The M function satis-
fying Eqgs. (7) and (8) can be decomposed into a
basis set of covariants for the group § in the form

M@®',P) = 2 aT,, (8)

(7h)

where
DNg)T(D*(g)]' = T
and the a; are scalar amplitudes.

We will assume that the spinor amplitude de-
seribes the scattering of some pair of super multi-
plets, and that, in general, several different spins are
in the same multiplet. Thus, if we restrict ¢ to
SL(2, C) & I, the representation D"(g), if not com-
pletely reducible, reduces as follows:

D"(g) e @‘. Dc-;.nJ(t) ® D""(u),

te SL2,0), wEI,
where ), s;, and g,, respectively, label the irreducible
representations of g, SL(2, C) (Lorentz group),

and the internal symmetry group I. The labels y, are
a set of Casimir operators for the internal symmetry

group.
The elastic unitarity condition for the scattering
of supermultiplets can be written:

M(P’, P) — M'(P', P)

_ f de (K)M®’, K)A(K)M (K, P).

)

(10)

This is a many-channel unitarity condition and we
assume the symmetry is exact and the thresholds
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are degenerate. The quantity A(K) is given by
AK) = A(k) = @: D" "(k-o/M) @ D*(1), (11)
where

k-¢/M = ko"/M = (k, — k-8)/M,

and [ is the identity element of internal symmetry.
Also in Eq. (10)

dQ (K) = [d'k:/(2r)")[d"k./(2m)"]
X o(ki — M)o(k; — M3).  (12)

If there is more than one supermultiplet, we merely
take the direct product in Eq. (11)

A(K) = [®: D" (ky-6/My) @ D*(D)]
® [@; D" (ka-6/M:) @ D*(D]. (1)

The matrices D***” (k-6/M,) are again representa-
tions of the homogeneous Lorentz group SL(2, C),
and are simply the numerators of the Feynman
propagators for higher-spin particles.* Also in Eq.
(11) ¥* = M*. In Eqgs. (12) and (13), k, and k, are
the momenta of the intermediate particles.

If Eq. (1) is to be invariant under the transfor-
mation Eq. (7) for M independent of g, then

[D\@1'A())DNg) = A®R), (14)

where ¢ &€ G and the transformation is linear. This
is certainly not the most general condition on A (K)
that is possible. For example, we could consider a
conformal group G that acts nonlinearly on the
mass hyperboloid. In this case the unitarity con-
dition would give us a condition of the form

[D@)'A(k)D(g) = J(k(g)/K)A(k(g)),  (15)

where J[(k(g)/k)] is the Jacobian of the volume
element on the mass hyperboloid [Eq. (12)], and k(g)
is the image of k& under the transformation g. We
hope to report on this case in the future,

If we concern ourselves with Eq. (14), where G is
a semi-simple Lie group, we can prove the following
theorems to rule out such a possibility. We define
an invariant of a representation A of some group
G as a matrix I'(G) with the property in this context.

[DNg)]'T(G)DNg) = I'G). (16)

For compact Lie groups'® of finite dimensional
unitary representations, I'(G) could be the unit
matrix with the dimensionality N(\) of the rep-
resentation \. Thus Eq. (16) implies that we have

1 H. Weyl, Classical Groups, Princeton Mathematical

Series (Princeton University Press, Princeton, N. J., 1946)
2nd ed.

J. MUZINICH

an invariant Hermitian form on a vector space
of dimension N ()).

Theorem: If there exists a group G which acts
irreducibly on the unitarity condition in the follow-
ing manner: [D*(g)]'A(k) D(g) = A(k)g € G, and
D*(g) is irreducible for each k independent of g, then
all A(k) are proportional to the invariant of the
representation I'(G).

Proof.

(DY) A(k:)DNg) = A(ky), (17a)

[Dg)]'A(k:)DNg) = A(k) (17b)
imply

DMg)A(k)A™ (k) = A(k)A™'(k)DYg),  (18)
since

(DN = A(k)[DNG)' A7 (k). (19)

From Schur’s lemma'' the only matrix that com-
mutes with all elements of an irreducible represen-
tation is a multiple of the unit matrix. Therefore,

A(kz) = aA(ky),

where a is a complex number. If there exists an
invariant of this representation I'(G), then by the
same argument

A(k) = a'T'G). (21)

This is clearly an undesirable feature for a physical
theory; for example, if we choose G' to be compact
with finite dimensional unitary representations,
then A (k) would be proportional to the identity of
the representation. Usually A(k,) is chosen to be
the invariant, where k, = (0, M), and the unitary
condition will be invariant at threshold.’

Theorem: If there exists a group G which acts on
the unitarity condition in the same manner as the
previous theorem, then (a) G does not contain the
Lorentz group, SL(2, C), (b) G is the little group of
k and contains SL(2, C), or (c) A(k) is the direct
sum of irreducible representations of one dimension'*
of SL(2, C), i.e.,

A(k) = @: D "(k-¢/M) ® D*(D).  (22)

Proof. Let ¢ € SL(2, C) assume G DO SL(2, C).
Then

DX(g) = @®: D“""(9) ® D*()) (23)

11 See Ref. 10 or I. Schur, Sitzber. Preuss Akad. Wiss,

Physik. Math. Kl., p. 406 (190

5).
2 [ would like to thank Dr. ()Z Itzykson for an interesting
conversation on this point.
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and
(D)@' A(k) D' ()
= @ [D“"(g))' D" (k-a/M) D" (g)
X D"() = @: D" (g"k-3q/M) ® D“(). (24)

Since SO(3, 1) is homomorphic to SL(2, ) of the
Lorentz group,

g'k-dg/M = k(g™)-¢/M = A \(g)k-6/M;  (25)
Eq. (24) becomes

(D))" A(K)DNg) = A(A™'(g)F). (26)
Equation (26) is possible if
A7 gk =k, (26")

or A(g) is a member of the little group of k, hence
g € is of the little group of k& which we call
SL(2, C);, which is isomorphic to the rotation group
in three dimensions SO(3) for k* = m* > 0.

In Eq. (24)

DV (g'k-Gg/M) = DV (k-6/M) i s =0;

otherwise we obtain Eq. (26). Thus Eq. (14) is
possible if

A(k) = @: D*(k-6/M) @ D*(D).  (27)

The only remaining possibility is that g & SL(2, C)
and G D SL(2, C). If we demand that the unitarity
condition Eq. (14) be invariant for all g independent
of k, then possibility (b) is out. And if we wish our
group G to contain SL(2, C) ® I D SL(2, C) we
have only trivial theory of spin 0 particles and the
whole problem is vacuous.

Since we know that it is impossible for G to act
irreducibly on the unitarity equation for a realistic
theory, then we would like to show that D)G) is
completely reducible.”

Theorem: If there exists a group G which acts on
the unitarity condition in the following manner:

[D()]'A(R)D(g) = A(k), (28)
where A (k) is defined through Eq. (11); Then
D(g) = @: D*() @ D*@), (29)

where u € 1.
Proof. Let us divide the proof into two cases:

Case (1): All representations D*“*” in A (k) are
inequivalent.”

1 Here by inequivalent representations of SL(2, C) we
mean those with different spin. This is, of course, not the only
criterion for inequivalence.
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From the previous theorem, D(g) is not irreducible
for nontrivial A(k); D(g) is reducible, but not com-
pletely reducible. Let us try a D(g) of the form

D) = [f}_'E_B_]- (30)
0D
Let us also write
A(k) = D“"(k-¢/M) ® D"(DA'(K),  (31)
where
A'(k) = “@1 D" (k-a/M) @ D*(I). (32)
Equation (28) immediately leads us to
A0 | _[Di 4, D,iDi A B
BegE s e
(33)

where
A, = D" k-¢/M) ® D"(I).

In order that inequivalent representations of
SL(2, C) will not be mixed in Eq. (33), and in order
that Eq. (33) be true for all k, we have B = 0,
and
|
D(g) = [P_‘:f)_
01D

* (34)

Proceeding further and repeating the argument we
can completely reduce D(g).

Case (2): A(k) contains equivalent D****® then
we can write

Ak) = @, D" (k-¢/M) ® ®; D“*"(1),

where j labels the irreducible representations of
internal symmetry going with the same 7. From
the previous argument we can reduce D(g) partially
with respect to A (k) of above.

We have the result that D(g) = @:D;, where

DI{A(”'M(k'O—'/M) ®€_)* Du;tk)}Di
= [A“ G 5/M) @ @, D)

for each s,.

From previous theorems, D; cannot be irreduci-
ble or contain the Lorentz group, unless s; = 0 and
we have a trivial one-dimensional representation of
SL(2, C). Thus, if Eq. (36) is to be valid for each
8;, then

(35)

(36)

D; = D"() ® D*(w), (37)
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where

[Dni(u)lf C‘Bk Du.(k)(l)Du.‘(u) = ('Bt D#f(k,(l).

The fact that we obtain a slight modification of the
result [Eq. (29)], since not all of the D**” (k-¢/M)
are inequivalent, is quite natural. This means that,
if our supermultiplets contain distinet internal
symmetry multiplets with the same spin, we have
the possibility of extending the internal symmetry
by combining different multiplets with the same
spin. An example is given by the 35-dimensional
representation of SU(6) and the ¢ w mixing. The
35-dimensional representation has the SU(3) X SU(2)
decomposition as is well known, 35 = (8, 3) @
(8, 1) @ (1, 3).

We have the desired result that the symmetry
group of the unitarity [Eq. (14)] is the internal sym-
metry group. If we allow transformations that
preserve the integration on the mass hyperboloid
and act linearly on the hyperboloid (keeping it
invariant), we obtain Lorentz transformations and
the group SL(2, (). Clearly the more interesting
case is Eq. (15).

We have not considered the translation part of
the Poincaré group. There are trivial extensions
of the Poincaré group in which the translation
part is imbedded in a larger Abelian group. Such
trivial extensions were considered by S. Coleman
who attributes them to P. Federbush. The trivial
extensions are of the form of an Abelian Lie algebra A.

o v (38)

(37

J. MUZINICH

where T is spanned by P, and A is spanned by Q..
The operators P, and Q, satisfy

[Pur I)-] = 0, !Puu Qn] = 0, [Qm Q&] = 0.

(39)

The Lie group generated by such a Lie algebra
will certainly be unitary if it is a good symmetry
of the S matrix. Also, in order to have Lorentz
covariance, the Q, must transform like irreducible
tensors under representations of SL(2, ().

and

III. SUMMARY AND SPECULATIONS

It should be clear that the interpretation of
SU(6)-type theories as an exact symmetry of a
relativistic theory with kinetic energy terms is a
more difficult assignment than previously thought.
However, in some approximate sense, SU(6) might
still be useful in strong interactions. The example
we have in mind is the hydrogen atom and the group
0(4), the levels of hydrogen for fixed n have the
degeneracy of O(4) (n here is the prineipal quantum
number and one of the Casimir operators for O(4)).
The hydrogen atom has been emphasized recently
by Gell-Mann'* as a testing ground for possible
noncompact symmetry groups. The point here is
that the symmetry is not obvious until the dy-
namical problem is solved. In strong-interaction
physics it will be necessary to understand more
deeply the interplay between dynamics and sym-
metry.

M. Gell-Mann, Y. Ne’eman, and Y. Dothan (to be
published),
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It is shown that, in space-times which are asymptotically flat, there are reasonable physical re-
strictions that allow one to impose coordinate conditions (in addition to the usual Bondi-type con-
ditions) which restrict the allowed coordinate group to a subgroup of the Bondi-Metzner—Sachs
group. This subgroup is isomorphic to the improper orthochronous inhomogeneous Lorentz group.

I. INTRODUCTION

N recent years the subject of gravitational radi-
ation has received a great deal of attention.'”®

One of the unusual results of this study was
that, even in space-times which are asymptotically
Minkowskian, one apparently cannot extract the
inhomogeneous Lorentz group as an asymptotic
symmetry group if finite (retarded) time intervals,
only, are considered. Instead, one obtains what
is known as the Bondi-Metzner-Sachs group (BMS
group)—an infinite parameter group. The purpose
of this note is to show that if one imposes certain
apparently reasonable physical restrictions at re-
tarded time w = — « (or, alternatively, at u=+ =),
it is possible to introduce further coordinate con-
ditions such that a well-defined (non-normal) sub-
group of the BMS group—isomorphic to the im-
proper orthochronous inhomogeneous Lorentz group
—is geometrically singled out by preserving these
coordinate conditions,

The physical situations we allow would appear
to include a general type of scattering problem
in which the sources, and perhaps some waves, can
come in from infinity and can again escape to
infinity after interacting. This generalizes certain
situations considered by Sachs. He observed® that
the inhomogeneous Lorentz group could be singled
out at, say, u = - = if, for example, all the matter
were radiated away as zero rest-mass energy, leaving
Minkowski space for sufficiently large wu; alter-

* Work supported, in part, by the Aerospace Research
Laboratory through the Furopean Office of the U. S. Air
Foree (and, in part, by Contract AF-AFOSR-454-63).

U H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner,
Proc. Roy. Soe. (London) A269, 21 (1962).

* R. K. Sachs, Proe. Roy. Soc. (London) A270, 103 (1962).

3 E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962);
4, 998 (1963). _

4 E. Newman and T. Unti, J. Math. Phys. 3, 891 (1962).

s R. Penrose, Proc. Roy. Soe. (London) A284, 159 (1965).

¢ . K. Sachs, Phys. Rev. 128, 2851 (1962).

natively, the system might ultimately simply become
static. The situations we consider here appear to
be much more general than this, although whether
or not they are quite as general as they seem to be,
depends, to some extent, on the validity of some
heuristic arguments we give, which have, as their
basis, some exact results in the linear theory of
gravitation.

As an additional purpose of this note, we introduce
an invariant differential operation on the sphere
(which we denote by 8) and use it to define a type
of “spin s spherical harmonic.”” This is done in
slightly greater generality than is absolutely nec-
essary for the present work, since it is also felt that
these ideas should find applications elsewhere’ and
that they could be used to simplify earlier worlk.*****

II. THE BMS GROUP

Let u, 0, ¢, r be standard (Bondi-type) coor-
dinates'**'® for asymptotically flat space-time.
Thus % is a relarded (tme parameter (so that
const are null hypersurfaces opening into the
future); 6, ¢ are spherical polar coordinates for
the sphere at infinity on each hypersurface w = const
(0, ¢, w = const giving the null geodesic generators
of these hypersurfaces); r is suitably defined radial
coordinate such as an affine or luminosity parameter
on each of the generators of the hypersurfaces.
The BMS group is defined by the following trans-

U =

formations®**® on the 8, ¢, u coordinates:
6 = 60'(6, ¢),
o' = ¢'(0, ¢), 2.1

u' = I{(ﬂy ¢) {u - a(ﬂ, ¢')}7
where (8, ¢) — (8, ¢') is a conformal transformation
? E. Newman and R. Penrose, Phys. Rev. Letters 15, 231

(1965).
# A. L. Janis and E. Newman, J. Math. Phys. 6, 902 (1965).
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of the (6, ¢)-sphere into itself, K is the corresponding
conformal factor, given by

de”? + sin® 0’ d¢” = K*(d6* + sin® 0d¢"), (2.2)

and where « is an arbitrary (suitably smooth) real
function on the sphere. (The r coordinate may also
be transformed, if desired, but the transformation
is somewhat arbitrary since it depends on the precise
type of radial coordinate used and it is not relevant
to the structure of the group.)

The particular BMS transformations for which
¢ = 0,¢’ = ¢ are called, in general, superiranslations.
Under a supertranslation, the system of null hyper-
surfaces u = const. is transformed into a different
system of null hypersurfaces (¥’ = const) but no
(Lorentz) rotation is involved. We may write « in
terms of spherical harmonics:

@ 1
o - ;E E‘ am.IY!.m(el ¢)J
-0 m=—
where the a,,, are constants. The infinile set of
parameters a,,; [subject to a_,., = (—=1)"d, ., so
that « is real] then define the supertranslation. If
A, = 0forl > 2, so that « takes the form:

a = ¢ + ¢ sin § cos¢ + ¢ sin 6sin ¢ + ¢ cos 0,
(2.3)

then the supertranslations reduce to a special case,
called the translations, with just four parameters

€q, * y €30

This terminology is, in fact, consistent with that
for the (Lorentz) translations in Minkowski space.
We may call a hypersurface v = const a “good”
cone in Minkowski space if it is the null cone of
some point, and a “bad” cone if, on the other hand,
the generators of u = const do not all meet in a
point. Thus, an actual translation in Minkowski
space must send “good” cones into “good” cones;
under a general supertranslation, the “good’” cones
will be warped into “bad” cones. It is precisely the
condition that « be given by (2.3), which is required
to preserve the “goodness” of the Minkowski null
cones.

In curved asymptotically flat space-times the
difficulty is to find an appropriate analog of the
Minkowskian concept of “good” and “bad” cones.
It is not, in fact, necessary to do this in order to
single out the translations from the remaining
supertranslations, since the translations are already
determined by (2.3).° But if we wish, in addition,

? In fact, Sachs has pointed out (Ref. 6) that the translation
subgroup of the BMS group is uniquely singled out by group

theoretic considerations, namely as the only four-parameter
normal subgroup of the BMS group.

E. T. NEWMAN AND R. PENROSE

to isolate the “pure” Lorentz rotations from Lorentz
rotations which have a “supertranslation com-
ponent,” then some concept of a distinetion between
“good” and “bad” cones is necessary. For we
might try to define Lorentz rotations (homogeneous
Lorentz transformation) as given by (2.1) with
a = 0. The hypersurface » = 0 is then transformed
into itself. In Minkowski space, if w = 0 is a*“good”
cone, the resulting transformation indeed represents
a Lorentz rotation and it sends other “good’” cones
into “good” cones. If, on the other hand v = 0
is a “bad” cone, then we do not get a Lorentz
rotation in general. Thus, for asymptotically flat
spaces, in order to know which of the BMS trans-
formations are to be regarded as “supertranslation-
free Lorentz rotations”, we must have some defi-
nition of “goodness” of u = const hypersurfaces.

In Minkowski space, the “good” cones can be
characterized locally by the fact that the null rays
generating them possess no shear. In asymptotically
Minkowskian spaces, it will only be the asymplotic
behavior of the (complex) shear o of these null
rays that will concern us. With null vector I tangent
to the null rays and complex null vector m* orthog-
onal to 1* satisfying m"m, = —1, I* and m* being
parallelly propagated along each ray, we have’

lm'm’n{ = o(u, 0, ¢, T) - Vu(u: 0, ¢)/T! + 0(7'-‘):
(2.4)

where r is scaled so that r, " — 1 at infinity. Thus
¢° defines the asymptotic shear of the hypersurface
given, say, by u = const. The complex quantity ¢°
is of special interest in gravitational radiation
theory. It forms part of the initial data on v = 0
used to determine the space-time asymptotically.*-*
Furthermore, d¢"/du and 8°¢"/du’ both have physical
significance. We may call 8°°/0u’ the gravitational
radialion field since it represents the r™' part of
the Riemann curvature field."*"* Bondi et al' and
Sachs® call 8¢°/du the “news function” since it
can be used as asymptotic initial data for the
gravitational radiation field and |d0°/du|* represents
the flux of energy of the gravitational radiation in
their analysis.

We cannot, however, attempt to define “good”
cones, in general, simply by requiring ¢° = 0.
In many cases it is simply not possible to arrange
¢° = 0 for all values of 6, ¢, on one hypersurface,
but even in cases where it is possible (e.g. in the
axially symmetrie, reflection symmetric cases), it
is clear from the above remarks that, in the pres-
ence of gravitational radiation, if ¢ = 0 for one
value of u, we will generally have ¢° # 0 for a
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later value of u (i.e.,, “‘goodness” would not be
invariant under time translation). The idea of the
present paper is that, if we make apparently reason-
able physical assumptions as to how the gravitational
radiation falls off at u = — o (or alternatively at
u = ), then we can effectively minimize o°
at © = — « (or alternatively at « = -+ ). This
will restrict our coordinates to such an extent that
only a subgroup of the BMS group remains—which
is isomorphic to the improper orthochronous inho-
mogeneous Lorentz group.

III. SPIN-WEIGHTED FUNCTIONS ON A SPHERE

In order to analyze the structure of ¢° as a function
of the angular coordinates 0, ¢, it is important first
to realize that, although it is given as a scalar, it
is really a tensorlike quantity. The directions of
minimum and maximum shear are determined by
arg ¢°. Under rotation of the spacelike vectors
Re (m*), Im (m") in their plane given by

(m*) = e¥m* (3.1
[with (i)' = I*, ¢ real], we then have
(o") = . (3.2)

We shall say that ¢° has spin weight 2. Generally,
a quantity » will be said to have spin weight s if
it transforms as

’ iy

=€ "y (3.3)

under (3.1). (Here, s is in general integral, but half
integral values can also occur.) The quantity a’
has, in addition, a conformal weight of —1. That is,
under (2.1) and (2.2), if we choose & = 0 and ex-
amine the ¢° for u = 0 (keeping the m* vectors fixed),
we find*

0_0)1 = _lO'o.

(3.4)

Generally, a quantity 7 defined on the (6, ¢)-sphere
has conformal weight w if under conformal trans-
formation of the sphere with conformal factor K
as in (2.2) (and with fixed m" vectors) we have

7 = K. (3.5)

(K is, in effect, the relativistic Doppler factor’
(¢ + v)}(c — v)7%.] For consistency with the coor-
dinate conditions,"**'* this conformal transformation
should be accompanied by

) =K, r =K,

with (m*)’ = m*, whence (3.4) [cf. (2.4)].
Effectively, the concepts of spin-weight and con-
formal weight refer to the behavior of functions

(3.6)
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on the (6, ¢)-sphere at infinity only, and do not
refer to the remainder of the space-time. Indeed,
the concepts will apply to any two-dimensional
abstract surface, with a Riemannian or conformal
structure. Quantities with spin weights correspond
to irreducible tensor quantities on the surface.
The vectors Re (m"), Im (m") may be regarded as
orthogonal tangent vectors (of length 274 at each
point of the surface. But we shall be concerned,
here, only with quantities defined on a sphere. If
spherical polar coordinates are used, a natural
choice®*” for m* is to make Re (m*) and Im (m*)
tangential, respectively, to the curves ¢ = const
and 6 = const. Another convenient coordinate
system for the sphere is (¢, {) where the complex
parameter { is related to (8, ¢) by

¢ =e™ cot }0. (3.7

In this case, the natural choice for m”* is to make

Re (m*) and Im (m*) tangential, respectively, to

the curves Im ({) = const and Re ({) = const.
Let 5 be a quantity defined on the sphere of

spin weight s. Define the operator §, in a particular

(8, ¢) coordinate system, by

—(sin 0)" {a% + = :—¢}{(sin 0" al. (38

On =

(The operator 3 is effectively a covariant differ-
entiation operator in the surface.) Under a rotation
of m* (but, for the moment, keeping the coordinates
fixed) we demand that Un behave as a quantity
of spin weight s 4+ 1. From (3.7) and the fact that
the m" vectors are rotated through an angle —¢ in
the passage from (8, ¢) to (¢, ), we obtain

¥y = 2P a(P'y) /¢ (3.9)
as the definition of ¥ in the (¢, {) system, where

P =31+ 9). (3.10)

[The coordinate ¢ and the P used here are related
to the ¢ and P (now called ¢’ and P') of Ref. 8
by § = —3{', P = }v2P']

Now, the first important property of the operatord
is that it is invariant (with spin weight unity) under
change of coordinate system which preserves the
sphere metric

ds' = d6* 4+ sin® 0d¢* = P didf.  (3.11)

This is most casily seen in the (¢, {) system and
the result for the (6, ¢) system will then follow. With
¢ as in (3.1), so that o’ = ¢"**n, we have

sy _ 387/08

YT (3.12)
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where (', {') i1s the new coordinate system, with
new complex tangent vector m* . Since ds’ = ds,
we have

at’jac = e 't P'/P (3.13)

with at’'/at = 0. From this it follows that ¥y’ =
2P (P ') Jag" =e" " By, as required. [In fact,
this argument applies equally to any surface, with
metric written ds® = P~* d¢ df, where P need not
have the form (3.10).]

The second important property of & concerns its
behavior under a conformal transformation. Let 5
have conformal weight w and spin weight s (both
integers or both half odd integers) where w > s.
Then,

¥y is a quantily of conformal weight s — 1, (3.14)

and, of course, spin weight w + 1. To prove this,
we need only consider conformal transformations
of the form

¢ = at, (3.15)

a being a constant, with (P") * di’ df’ = K°P* d¢ df
so that

K =aP/P' = (1 + ¢§)/(a" + atd).

[The general conformal self-transformation of the
sphere, execluding reflections can be built up from
transformations of the type (3.15)—corresponding
to a Lorentz velocity transformation in the direction
of the zaxis—and rotations which preserve the
metric. These rotations have been already dealt with,
since they correspond to metric preserving coordinate
transformations.] It is required to prove that, under
(3.15), 3° *"'y)’ = K* ' 3 "'y [The m* vectors
are unaltered under (3.15).] This can be done by
a kind of inductive argument which is somewhat
tedious for general values of w — s. For small
value of w — s it is not hard to verify directly that

(3.16)

:I—wa_ .szi '2...—6— DN K Y 0). o s
O (A (A (O SHR )
= KPS (e () ),

where from (3.16) we use the fact that P* 9K ' /d¢ is
a constant. It is a curious fact that, given n with
w > s, there is just the one power of 8 given in (3.14)
which yields a quantity correctly transforming (i.e.,
with a “weight””) under a conformal transformation.
If w> —s, then """y also correctly transforms
with conformal weight —s — 1. Here & is defined
[in the (¢, {) system] by

E. T. NEWMAN AND R. PENROSE

¥y = 2P 9P "n) /oF. (3.17)

If w > |[s], then we can apply both operators to
get a quantity with conformal weight —w — 2:

= FUF . (3.18)

ﬁ|r+n+l .zsu--a+ln

That these two quantities are equal is not immedi-
ately obvious since the operators § and ¥ do not
in general commute. In fact, we have

(B8 — B8y = 2sy. (3.19)

However, it is a consequence of the following con-
siderations that 88"y = 5"y wheneverg — p = 2s.
The third important property of ¥ concerns its
effect on spherical harmonics. Let ¥V, (0 =0,1, - -+ ;
—1I, ++- , 40 be the usual scalar spherical
harmonies. Then we can define the spin s spherical
harmonics”™® (for integral spin) as follows:

[(; - sﬁ]* Y. 0 <s<,

m =

v = (L + 9!
| N1 -
o $EM oy, ci<ao),
(3.20)

The .Y, are not defined for |s| > [ In the (¢, )
system, the spin s harmonies take the form

Ay, m .
aYl'.rn = [(i-—s)‘(l—i—s)!P (1+$§-)
» I\p+s&—m l — 8 l+s
X ; =9 ( P )(p + s — m)’ (3.21)

summed over integral values of p, the a,, being
numerical constants whose exact values are ines-
sential for our purposes. [In fact, (3.21) applies
also to “spinor harmonies” for which [, m, and sareall
half odd integers.] We have ,¥, . = (—=1)"""_, ¥, _..
and, for all s with |s| < [,

3GYim) = [ =9+ s+ DYV,
B(Yim) = =+ (U — s+ DY

In particular, 3 annihilates .Y, ,, whenever | = s
and § annihilates Y, ,, if | = —s. We see, further-
more, that 8 annihilates any quantity of spin
weight s which is composed only of harmonies
with [ < s 4 p.

The .Y, ,, are eigenfunctions of the operator ¥ for
each spin weight s:

L Yim) = —(L— )L+ s + 1), V0.

(If s = 0, 39 is essentially the total angular mo-
mentum operator.) More generally,

(3.23)
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= —8)! ! Bii i impls =
Y0 = (—1) (l(_lsj).)' (l(—llz-i-.sl.—)'p). Yoo Bu - 0 implies u = 0. ' (3.30)
P ; (3.24) For, by (3.17), 8u = 0 implies that P "'u is an

For each given s, the ,Y, .. form a set of ortho-
normal functions of spin weight s on the sphere:
fl)ff.m -}71‘,":‘ dS = 6“' 6,“,"', (3.25)
dS being the surface area element on the sphere.
This can be proved (s being an integer) by induction
on s using (3.22), the orthonormality of ¥, .., and
the fact that
f (BA)B dS = — f A(SB) dS (3.26)
with (spin weight of A) 4 (spin weight of B) = —1.
[It is immediate from (3.8) that [ ®C dS = 0
(where C has spin weight —1) and (3.26) follows.]
The orthonormal functions ,Y, ., are also complete,
for spin weight s quantities on the sphere. That is,
if » has spin weight s and is suitably regular'® on
the sphere, there exist constants #,, such that

gy = ‘z: ni.m lYl.m- (327)

To see this, without loss of generality choose s > 0
and consider §'y. This has spin weight zero, so
from the completeness of the Y, ., we have, for
some constants ¢, .,

¥y = Lzmcp,,,l’;,,.. (3.28)
By (3.24), we can write this
Sl = Zxim¥Yial = Zbiulim  (329)
e i<
where
- =9

Xt,m = (l + 3)! (“1).¢l.m(l > 3)-
Moreover, the right-hand side of (3.29) must vanish
since, if we multiply (3.29) by ¥,..(I' < s) and
integrate over the sphere, we get ¢;.,, on the right
and [ ¥, 8'{--+} dS on the left. Applying (3.26)
and 8" ¥V,.,., = 0(' < s), we see that this vanishes.
‘Thus, all the ¢’s (with I’ < s) vanish, so the left-
hand side of (3.29) also vanishes. Now, if g is any
suitably regular quantity on the sphere, of spin
weight s" where ' > 0, then

19 We use the phrase “suitably regular’’ in the sense that
7 is a smooth function of ¢ and ¢ in the (¢, §) system and that
if we transform coordinates by, say, ' ={", then 5’ is a smooth
function of ¢’ and {’. This deals with the point { = = in the
(§, £) system.

analytic function of ¢. Hence limy; .. [P™*'u| > 0
unless g = 0. But 5" > 0, so that P™*" — 0 and u
must be bounded for all {. Therefore u = 0. Repeated
application of (3.30) to (3.29) now gives (3.27) as
required, with

1 = {0+ )V — )i m.

Another way of expressing this result is: given
any suitably regular n on the sphere,'® of (integral)
spin weight s > 0, there exists £ of spin weight
zero for which

n = Bt (3.31)

The relevance to this paper of the foregoing analysis
lies essentially in this result."' (In the above, £ =
> XtmYim) One reason this will be of interest
to us here is that it enables us to define the “‘electrie”
and “magnetic” parts of 5, denoted, respectively,
by #, and %, where

no =0 Re(), =709 Im@E). (332

[If, instead, s < 0, then we would use § in place
of 8 and —s in place of sin (3.31), (3.32).] We would
get the same », and n,, if a different choice of ¢ were
made in (3.31), since the arbitrariness in £ lies only
in harmonics Y, ,, with I < s. We can characterize
7. and 7., by the fact that

o i (3.33)

with

0. =8n, D= —0na (3.39)

The invariance properties of § imply that the
concepts of “magnetic” and “electric” parts of 5
are suitably invariant under rotations of the sphere
or of the m" vectors. I'urthermore if (and only if) g
has conformal weight —1, the splitting of 7 into
its “electric” and “magnetic” parts is also invariant
under conformal transformation of the sphere [cf.
(3.14)]. _

Here we shall apply these concepts to ¢°. The
spin weight is 2 and the conformal weight is —1,
so on each hypersurface u = const, we have a
splitting ¢® = ¢ 4 ¢° which is invariant under
conformal transformations of the (0, ¢)-sphere, i.e.,
under the “Lorentz’” transformations (2.1) which
leave the hypersurface invariant. The ¢’ and its
u-derivatives describe properties of the gravitational

1t This result, in the case = ¢°, is considered by D. Lamb,
J. Math. Phys. 7, 458 (1966).
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radiation field. By analogy with the linear theory,
we may suppose u® to be associated with “electric’-
type radiation (e.g., arising from changes in the
mass quadrupole) and o2 to be associated with
“magnetic”’-type radiation (e.g., arising from changes
in the angular momentum quadrupole). The analogy
with electrodynamics arising here is the reason for
the use of the terms “electric” and “magnetic” in
(3.32). In the next section, we consider these matters
more explicitly.

IV. PHYSICAL ASSUMPTIONS

We wish to impose physical restrictions on the
systems under consideration, which have sufficient
generality to include scattering problems in which
sources can come in from and go out to spatial
infinity with initial and final velocities less than e¢.
In particular, the sources might all be confined to
a bounded region of space. We shall require that
the angular momentum, with respect to some origin,
of each component part of the source remains
bounded for all time (where it is assumed that there
are a finite number of “parts” to the source).
Generally, the physical restrictions that we impose
are intended to be such that, ¥ — — e (or alter-
natively as u — + =), ¢° behaves as

o’(u, 8, ¢) — S(6, 9), (4.1)

with S independent of w. If the analogy with the
linear theory is to be trusted, we would normally
expect S to have no “magnetic” part. This would
add some force to the arguments but it is not
actually essential. On the basis of (4.1) alone, we
shall be able to extract the inhomogeneous Lorentz
group.

In order to investigate what is entailed physically
by the requirement that (4.1) hold, we must resort
to analogies with the linear theory. The full theory
is, unfortunately, insufficiently developed as yet
to enable us to infer the exact relation between the
motion of the sources and asymptotic quantities
such as ¢°. In the linear theory, we may take u =
const to be “good” cones in Minkowski space. Since
the shear of these cones now vanishes, the linearized
¢°, denoted ¢9,, describes a first-order deviation
from “goodness” of these cones. We can then obtain
o};a from the multipole moments C, .(u) of the
source distribution by*"’

A= Crd ) @

where f = f(0, ¢) is real, independent of u, and
corresponds to the gauge freedom in ¢°, and where
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the B:... are some inessential numeries. (Both 8, .
and C, .. have spin weight zero.)

The type of behavior for the multipole moments
that we may assume as reasonable is

(4.3)
Cim ~u'?, (4.4)

€ g

where Cj , and C}, correspond, respectively, to
the “electric’ and “magnetic” parts of the multipole
moments, so that C} .Y, ., and C},.Y, . are the
real and imaginary parts of C, .Y, .. For example,
for I = 2, the C3 , and C7,, are, respectively, the
five components of the mass quadrupole moment and
spin (or angular momentum) quadrupole moment,
defined so that C3 ,, ~ 2 MR* and C,, ~ 2 LR,
where M, L, and E are the mass, angular momentum,
and distance from the origin of each component
of the source. If each component is moving with
uniform limiting velocity and each angular mo-
mentum is bounded, we have R ~ u, L, ~ 1, whence
C;.. ~ u’ and C?, ~ u. The corresponding argu-
ment for higher moments leads to (4.3) and (4.4).

By substituting (4.3) and (4.4) into (4.2), a
reasonable guess for of,, results:

dlia = '(4 + 1B + f}, (4.5)

where

A = Eﬁl.ud Cldl-iY‘ =

iym U

is real and tends to a finite limit as u —» — o (or
as u — -+ =), and where

lsym
B= 3 g Hfue)

is real and tends to zero as u — — = (oru — + =),
Of course, (4.5) cannot be inferred rigorously from
(4.3) and (4.4) since it is not permissible simply to
differentiate order of magnitudes in this way. But if
the behavior (4.3) and (4.4) is sufficiently “smooth”
asymptotically, then the deduction is valid. This
would rule out oscillatory behavior for the sources"
in the distant past (or future), since such behavior
would certainly contradict (4.5). We assume, here,
that the components of the system have no accel-
erations in the limit ¥ — — » (or ¥ — 4+ @) which
would lead to a violation of (4.5).

2 An interesting case that would be excluded by our
assumptions is that of two masses revolving about one another
in ever decreasing circles as they lose energy by gravitational
radiation. Here the angular momentum is unbounded as
u — — o and apparently ¢°® ~ 43’8,



A NOTE ON THE BONDI-

We can rewrite (4.5) as
U‘l.ln - So(G’ ¢) (46)

when 4 — —w (or u — + ) §, being purely
“electric” and independent of wu. Thus, it seems
not unreasonable to infer that, under similar physical
assumptions in the full theory, (4.1) will hold [with
S(6, ¢) purely electric).

It may be felt that the analogy with the linear
theory would be a little more trustworthy, however,
if given in terms of gauge independent quantities
such as the radiation field 8°s°/0u?, rather than ¢°.
If we assume 9%:°/9u? behaves, in the full theory,
in the same way as a 8°¢},,/du’ consistent with (4.6),
then the only difference in the behavior of ¢° that
could arise would lie in the constants of integration.
Moreover, the constant of integration involved in the
passage from d°¢"/du’ to 9¢°/du must be zero.
This follows from a requirement that the total
energy radiated away, as measured according to
the Bondi-Sachs formula':?

M1 13

Ju

be finite. In fact, this finiteness requirement for
the gravitationally radiated energy greatly restricts
the behavior of 36°/0u as 4 — 4w in any case
in the full theory, in a rigorous way (e.g., any simple
oscillatory behavior would be ruled out). However,
this is not sufficient for our purposes, since the
radiated energy is finite if ¢° ~ ¥}*'(0 < ¢ < %)
but this would violate (4.1). The remaining constant
of integration arises in the passage from da°/du to ¢°,
and this would be the S of (4.1). In the linear
theory the 8 = 8, is purely “electric” and this
may be reasonable in the full theory also. But, in
any case, the possibility of S having a “magnetic”
part can also be treated here,

We now show that, under the assumptions stated
above, it is possible to introduce coordinate con-
ditions such that S.(8, ¢) = 0. This will be irre-
spective of whether the “magnetic” part S., of
8(=8, + 8.), vanishes. Sachs’ has shown that,
under a BMS transformation (2.1), ¢° transforms
[ef. also (3.2), (3.4)] as

a"(u, 0,¢) = K™ (c°(u, 0,¢) — %)  (4.7)

(a having spin weight zero). It should be pointed
out that o°(u, 6, ¢) refers to the asymptotic shear
of the hypersurfaces u’ = const of the transformed
coordinate system, although evaluated at the (u, 6, ¢)
of the original coordinate system. The complete
transformation to ¢*(u/, ¢, ¢’) is, of course, more

du df sin 0 dg,
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complicated. Applied to (4.1), (4.7) gives
Si(0, ) = K7 (8,00, ¢) — 1),  (4.8)
Su(6, ¢) = K™' e’-‘iSm(al é), (4.9)

since a is real. Since by (3.32) we can write S, (0, ¢) =
B°G for some real ¢ and since « can be chosen
arbitrarily on the (6, ¢)-sphere, it follows that
a BMS transformation exists (e.g., a = 2@) for
which S[(6, ¢) = 0, as required.

We thus may adopt as our coordinate condition
the requirement that S,(6, ¢) = 0. This can be done
for the S, defined either at u = — @ oratu = + .
For definiteness we could choose the condition
defined at ¥ = — o, (If S, = 0, this means that
in the limit ¥ — — = the hypersurfaces u = const
become nearer and nearer to heing asymptotically
like the “good” cones of Minkowski space.) The
BMS transformations which preserve the coordinate
condition S, = 0 are now those for which 3%« = 0
[cf. (4.8)]. Thus  has the form (2.3) and the allowed
supertranslations are simply the translations. The
“Lorentz rotations” given by @ = 0 clearly do not
destroy the coordinate condition S, = 0. [The
fact that S has conformal weight —1 is essential
here, since the splitting S = S, 4+ S. must be
invariant under conformal transformation of the
(8, ¢)-sphere, ¥* being also suitably conformally
invariant here.] The transformations (2.1) with «
as in (2.3) have the same form as inhomogencous
Lorentz transformations in Minkowski space. Thus,
the group of coordinate transformations which pre-
serve all the usual coordinate conditions in asymp-
totic gravitational radiation theory as well as
keeping S, = 0atu = — o (orelseatu = + =) is
isomorphic to the improper orthochronous inho-
mogeneous Lorentz group.

V. DISCUSSION

There are several inconclusive aspects of this
work (even apart from the heuristic nature of the
argument concerning the physical assumptions)
which should be mentioned. In particular, the
ambiguity as to where the coordinate condition
S, = 0 is to be imposed is disturbing. If the con-
dition is imposed at u = — @, there seems no reason
at all to believe that the condition would then
automatically hold also at v = + » (although it is
just conceivable that ““coherence” relations between
the radiation-field data at infinity, of the type
considered by Friedlander,"” might link the con-

( E‘il)?‘ G. Friedlander, Proc. Roy. Soc. (London) A279, 386
1964 ).
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dition S, = 0 at u = — o with that at u + o).
In fact, the situation is worse than this since all
the above arguments could be repeated using an
advanced time parameter » in place of the retarded
time %. We would then have four different alternative
ways of choosing coordinate conditions, namely
S, = 0 at u = 4=, or the corresponding S, = 0
at v + o, any one of which would lead to the
inhomogeneous Lorentz group, but the different
choices would apparently be quite unrelated.

It would be interesting to know whether the
conditions at u — o are in any way related to
those at » + . In the conformal approach to
asymptotic analysis’ v = — o, u = —, and u
+ o« appear as distinet “points” I, I°, and I, re-
spectively, but » = 4+ o represents the same * points”
I’ asu = — =, Another question of interest is the re-
lation of the present work to that of the Bergmann,**
who concludes that if one examines asymptotically
flat space-times by proceeding to infinity in spacelike
directions, then one cannot extract the inhomo-
geneous Lorentz group as an asymptotic symmetry
group. From the conformal point of view, this is
again concerned with the “point” I°, but, since 1° is

u P. G. Bergmann, Phys. Rev, 124, 274 (1961).
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approached quite differently in the two analyses,
there appears to be no essential conflict here.

A further unanswered question concerns the
relevance of the present work to some recent sug-
gestions®'*''® that possibly the BMS group can
play a role in elementary-particle physics. It is
not at all clear that considerations of this paper
affect this possibility. The arguments here require
consideration of infinite times, while the BMS group
emerges if only finite (retarded) time intervals are
considered. For such finite time intervals, the BMS
group must still be regarded as the relevant asymp-
totic symmetry group for situations involving
gravitational radiation in asymptotically flat space-
time.
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The structure of a scattering operator which describes events above a three-body and below a
four-body threshold has been studied. It is shown that one can approximate it arbitrarily closely in

the norm as the sum of two operators, eacl} having a simple form. Using this decomposition, one obtains
a general form for the spectral decomposition of this scattering operator.

INTRODUCTION

HE S-operator describing the elastic scattering
of two spinless particles may be written in
the form

§ = 3 [ @P) exp 26807, P IPUINPUD, (1)
T
where P is the total 4-momentum of the pair,
[J(J + 1)) is the magnitude, and j the projection
of the total angular momentum vector of the pair
in their center-of-mass frame. This general form is
dictated entirely by kinematics and in particular
by the requirements of Lorentz invariance. The
content of this form, the explicit functional de-
pendence of & on P* and J, may be said to be
the domain of the dynamics.

Consider next the S-operator deseribing all
processes above a three-and below a four-particle
threshold. In addition to P* and J, there are now
other variables on which exp [248] depends. It is
shown in this paper how one can approximate,
in the norm, arbitrarily closely, this S by a sequence

S(N! =y S
(convergence in the norm as N — o), (2)

One can then deduce the form of the spectral de-
composition of each S, obtaining the equation
analogous to Eq. (1) which expresses the form of
the spectral decomposition in the two-particle case.!

The analysis is purely on the mass shell and
assumes only that S-matrix elements have the
singularities implied by perturbation theory.

It is found that, for any given S and for fized
values of P* and J, exp [2¢5] has a continuous and
possibly a discrete range. The continuous range
which arises solely and directly from the discon-
nected graphs is eractly known. Essentially it is
" 1 Some information about the spectrum of S has been
obtained by a number of authors from the point of view of

olential scattering (see, e.g., S. Weinberg, Phys. Rev. 133,
232 (1964)].
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just the elastic scattering phase shifts for each two
particle pairing in the three-particle subsystem.

NOTATION

Wick’s procedure” will be used to describe a
complete set of states of three particles (respective
variables will have suffixes 1, 2, or 3). These are
cigenstates of total 4-momentum P = p, + p, + ps;
total angular momentum in the over-all center-
of-mass system (J7); total relativistic mass (squared)
of a particular pair of particles, e.g., o, = (ps + ps)’;
angular momentum of the same pair in their center-
of-mass system® (J,4,). Their normalization is
P'(J'Nea(T i) P ool aja))

= al‘Jar“iaJ’-‘J.ai.’i.‘54(P’ — P)i(el — 0.) (3)

for @ = 1, 2, or 3. A complete set for the two-
particle states will be, as in Eq. (1), denoted by
|P(J7)). In terms of these, the S-operator is given by

S = 3 [ @PSal*, ) + 5uP%, J)
+ 8ulP, J) + Su®, D)), ()

SulP, ) = SO, J) [PUDXPU), )
Sl 1) = B [ dou SO, T 000,500

X IPUINPUo.Laid,  ©
SuP, ) = 3 [ do. SGo(7.3); P

(Jaia)

X |P(IDoa(JajIXPD],  (7)

> - f do. do

(Jaia) (Ja'ia")
X S(ei(J2d); P 0a(Jaja))
X [P(Jjoi(Jij)PTea(Safa)l.  (8)
* G. Wick, Ann. Phys. (N. Y.) 18, 65 (1962).

¥ This is only roughly speaking, for exact statement see
Ref. (2).

Su(P?, J)
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In the above equations, the upper and lower limits
on the P° integrals, corresponding to the four- and
three-body thresholds, are left implicit. Similarly,
the finite range of ¢, is implicit in all equations.
Since unitarity requires

S(P?, J)S*(P*, J) + “Z] fdo‘.
X 8P ; 0u(J aju)) S*P' 5 0u(Juja)) = 1 (9)

ete., four other equations, one can construct with
these functions, for every fixed P*J, a unitary

operator in a reduced Hilbert space jc.' Thus, de-
fining

g - Sza + Sza -+ S:z -+ Saa, (10)
Sa = S(P*, J) I, (1)
Su= T f do S(PT; 0u(d aja))
X |MoalJaja)|, ete.,, (12)
(1)=1, (13)
(’:(Jijn')l Ua(Juja))
= 5.:..:-'5:'.,!4'5(“:: _L"';)s (14)
one obtains
88'=1= X+ ¥ [da,
(Jaia)
X I‘n(Juja)xaa(Juju)l' (15)

This paper is essentially an analysis of the spec-
trum of S. Once this is known, the spectral de-
composition of S can be written as

s- > f @dP) |P(J) 8 (P(T),

using an obvious notation. In the preceding formula
(as in the following), P, (Jj) are left implicit param-
eters.

Finally, since there are three different ways to
couple the three particles, one has to deal with
recoupling coefficients,” and the following ab-
breviation is used

(P'(J'§)0i(J 252) | P(TDos(Jsla))

= §P’ — P)a.:'.lai'i<°'c:(‘f‘:j;) ]o,(J;]‘;))

for « = B.

It is necessary and sufficient for present purposes
merely to note that (¢(JZ2j2) | as(Jsjs)) is, for
a = B, a square-integrable function of ¢! and .

¢ Equivalently, the space of vectors (f:(d.,(Jalfq))r I2)
!m"'r!ﬁihmte norm [|f|* = [f2f* + ¥ .4.) Jdo|fs[* This norm

18 im ed by the Dirac notation.
& G. Wick, Ref. 2.

(16)

(17

E. A. REMLER

ANALYSIS

It is convenient, tq study, instead of S, a directly
related Hermetian operator defined by*

D=1-3¥8+38y-1-38+48Y. @8

In order to proceeq further, one must assume
something about the giructure of S; S-matrix
elements will be congidered to have only those
singularities in the physical region implied by
perturbation theory, These are just the é-function
type associated with disconnected graphs and the
pole type associated with one real particle exchange.

Consequently, one can write D = Dy + D,
where D, arises from eonnected parts and D, from
disconnected parts,

D, is, however, Hilber-Schmidt operator in .
When the pole terms ip, the diagrams contributing to
D, are integrated qyer during the projection of
D, onto a subspace of 5 corresponding to a given
(J3), they turn into logarithmic singularities which
are square integrable Thus D, which contains
all the true three partigle dynamical content in 8§,
is relatively tame. Even go, unfortunately, when D,
is added to Dy, it can, in principle, drastically alter
the spectral resolution of the latter.” In fact, the
only aspect the spectrg of H and D, which must
always stay the same is the limit points.®* D,
can, however, be approximated arbitrarily closely
in the norm by ap operator of finite rank. The
effect of such an opepgtor added to one of known
spectral resolution ig easily calculable. Specifically,
it is clear that only the discrete spectrum’ of the
already known opergtor may change. Thus, one
can say that D is the limit in the norm of a se-
quence of 8pProXimations,'® each of which has the

same spectrum as [, eycept for the position and
number of discrete poip .

The next task is evidently to investigate the
spectrum of Dy, givey by
3

D. = n§ (.rg.) f 7q du(J o, 02)

N— X |oald ajudXalTaja)-  (19)
¢ The second form j " : r——
find S if D is known'?mlln Eq. (18) is useful for inverting

. in an approximation.

' F. Riesz and B. Sz-gagy, Fu?;gtional Analysis (Frederick
Ungar Publishing Company, 'New York, 1955), Sec. 134.

* F. Riesz and B. 87.Nyg\ ‘Ref. 7, Sec, 133. Limit points
are points of the continygys’ spectrum, limit points of the
point spectrum and charyeteristic values of infinite multi-
plicity. The tricky point here i5 that a continuous spectrum
“}'Ehmt'e“?h‘mge % a denumerable everywhere dense subset
ol 1 .

9 Spectrum means on] i lues and not the eigen-
vectors (which must Chaf? 'tahe eigenvalues
19 The Hilbert-Schmiqy nf)erator D can be approximated

by taking any finite numpey of leading terms in its spectral

decomposition.
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If the |0.(J.j.)) were orthonormal, this spectrum
would be manifest. The discussion extending from
this point to Eq. (39) consists in showing that D,
may be approximated by an operator having the
same continuous spectrum as D, would have if
|oa(Jaja)) werein fact orthonormal. Introducing the
abbreviation

v = la, (Jaja)} (20)

(i.e., v tells what pairing « should be dealt with
and the angular momentum numbers for that pair-
ing), Eq. (19) can be rewritten as

b= [ a0 lo¥oldo = X Duy @D
where
d,(e) = 1 — cos (25,(0))
=1 — cos [250(']0: 0’,)]. (22)

Thus 6,(¢) is the elastic scattering phase shift
for a certain pair of particles in a certain angular
momentum state at energy (squared) equal o.

Consider next the sequence D{™; N =1, 2, ---
formed by deleting all D, in the summation in
Eq. (21) having J. > N (ie, N is the highest
angular momentum kept in an approximation of
the two-body interactions). Thus one writes

b = i, D.,. (23)
Then
D™ = D, (convergence in the norm). (24)
In fact,
15, = B = 1| E Bl
STUT Shl, e

and, since different (J.j.) for fixed « designate
orthogonal subspaces,

”;fv;'” ,Z Dy,|| = Sup {d,(0); Jo > N,a}. (26)

But
d,(s) = 1 — cos 28, = 2 |sin 8,(c)e'" " |* (26)
= (Kinematic factor) X |f,(o)[*, 27

where f,(¢) is the (J.j.) expansion coefficient of
Phe Legendre polynomial expansion of the scatter-
Ing amplitude f(#). The existence of such a func-
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tion as f(6) (square integrable over cos 6) implies
that, for each a and ¢,

> @@ + 1) = c.(0)

ala

< Sup {e(0); 0} =c < =, (28)

so that
d,(o) < ¢c/(2Ja + 1).

This uniform convergence [with respect to ¢ of the
d,(c)] to zero as J, — = ensures, using (26), the
convergence in the norm of D",

In order to clarify the nature of the spectrum of
each D{™, note that the set {|ov); » < wy} is not
orthonormal, so it is convenient to introduce

(1 4+ Qx) |wN) = |ov)

(29)

(30)
such that

(¢'v'N | wN) = §,.,8(c" — a), vr < vy

This requires
@v'N| (1 4+ Qw)'(1 + Qu) |ovN) = (o' | o). (32)

From the square integrability of the Wick trans-
formation coefficients,’ it follows that

35 [ doda’ o o) — .80 — ) < =, (33)
so that one can write

@ o) = 3 6@ @)1+ AY),  (39)

where the ¢’ are a complete orthonormal set of

functions and

2N < o

n

N =" a4+ ") 20
(35)

Thus (Neov | $!¥) = ¥ (av). Equations (35) are im-
plied by the Hilbert-Schmidt character, the Hermi-
ticity of the kernel in Eq. (33), and the positive
semidefiniteness of the norm in 3¢ (respectively).
A consequence of the last statement is that 1 + Qx
may have no unique inverse, but this is unimportant
for present purposes. Thus

(e»'N| (1 + Qx) |owN)

= 2 M) (a1 + A (36)

and

Qv = 2 [+ M) = 1] 6" X", (37)
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showing that Qy can always be found and is itself
Hilbert-Schmidt. Writing

" = f do Y. |owN)d, (o) (mN|,  (38)

vEYN

one obtains

D = a™ + [Qvd™ + dQy + Qxd™Qu]. (39)
The spectrum of d’ is manifest. The term added
to it is Hilbert-Schmidt because of its Qy multi-
pliers.” Thus D{™ can be written as the limit in
the norm of a sequence of operators of the form
d'™ plus operator of finite rank.'”'* It is then
obvious' that one can find finite rank approxima-
tions such that

d + finite rank operator

= D™ = D (in the norm). (40)
The spectrum of D’ can consequently only differ
from that of dY’ by the addition of a point spec-
trum. The continuous spectrum remains intact.
From this, one can immediately deduce the general
form of the spectral decomposition of S °

5 = 3 [ o oxp 2is, o)) [N )|

My
+ D48 |[MNYXMN|.  (41)
M=1

1 F, Riesz and B. Sz-Nagy, Rel. 7, Sec. 76.

2 The finite rank operator in Eq. (40) is the sum of two
parts, (i) a finite rank part necessary to add to d%) to achieve
the desired approximation to DsW), (ii) a finite rank part
approximating D. to arbitrary accuracy.

REMLER

The set {lowN), |MN)} is orthonormal, and My
is probably finite' for finite N. The bar serves to
remind one that [o»N') in general differ from |ovN).
The explicit form of this orthonormal set and the
eigenvalues of the discrete spectrum vy depend
on the details of the finite rank operator added
to d"¥ to form DY, The 3,(c) are, however, exactly
the two body elastic scattering phase shifts. S’
is now given by'*

s =3 f (dP) |P(J)S™M(P(IP]. (42)

i)
DISCUSSION

The S-operator above the production threshold
has been shown to be the limit in the norm of a
sequence of operators of simple form. A general
form for its spectral decomposition has thereby
been found.

The continuous spectrum is the sum of the contin-
uous speetra of the possible disconnected processes.
1t would be interesting to discover the physical
significance, if any, of the discrete spectrum.

Finally, these methods and these results appear
equally applicable to the S-operator beyond the four-
particle threshold.
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1 We know of no rigorous proof of the finiteness of My.
However, the necessary conditions for it to be infinite appear

extremely improbable.
W That is, [P(Ji)) = |P(J5)

[P(UiNoa(Taja)) = |P(Ji)oa(Jaja))-
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The high-energy behavior of the absorptive part A(s) of the forward scattering amplitude in the
g¢? ladder-graph approximation can be obtained from a homogeneous integral equation. If A(s)
grows as 5% a is the highest characteristic value of this equation. When the mass p of the exchanged
particles is nonzero, the high-g behavior of « is radically different from that in the case of scalar
photon exchange. For small g, « = —1 + ¢%a — ¢*b + ..., where a is independent of . The depen-

dence of b on p has been caleulated.

I. INTRODUCTION

EVERAL reasons underlie the current popu-

larity of summing Feynman graphs. Attempts
to deal with renormalization problems have used
such summation techniques." Models which sum
infinite series of graphs may have scattering cross
sections behaving sensibly at high energies.” Finally,
the connection between such field-theoretic models
and their counterparts in nonrelativistic potential
scattering is of great interest, for example, in the
theory of Regge poles.®

In this paper, we have placed bounds on the
leading zero-energy Regge pole «(0) for the sum
of ladder graphs in g¢° theory (see Fig. 1). Now
a(0) has been obtained exactly for a scalar photon-
exchange model,* but we are interested in drawing
an analogy with the Yukawa potential and hence
cannot set the mass g of the exchanged particle
equal to zero.

The leading zero-energy Regge pole «(0) may
be thought of as the highest angular momentum
of a bound state in a Yukawa potential Ae " /myr.
As the coupling constant is increased, the centrif-
ugal potential a(e + 1)/r° must increase propor-
tionately, so that

* Part of a thesis submitted to Princeton University in
Wrtial fulfillment of the degree of Doctor of Philosophy.

ork supported by the National Science Foundation.

1 Present address: Department of Physics, University of
Washington, Seattle, Washington.
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Fic. 1. Ladder graphs in g¢* theory. Horizonfal lines have
mass m and vertical lines have mass p.

lim a(e + 1)/X = 1/mpe. (1)
A—m
Moreover, this property, with an altered constant
on the right-hand side, is true for many potentials.®
In the ladder-graph model we identify A with g*
times a factor. If the two models were similar we
would expect that as g — =, a/g — const. This
indeed holds for the scalar photon-exchange model:
letting m be the mass of the particles exchanging
the photons, the exact expression for a is

a = —3 + §[1 + (¢"/4="m")]! 2)
so that
lim a(g/4mm)™" = 1. (3)

However, Eq. (3) has no bearing on an analogy
with the Yukawa potential. What we find instead
of (3), when p # 0, is that

lim a(g/u) "} = const, (4)

g—+m

which is strikingly different from (1) or (3).

We have also examined the effects of a nonzero
p on the weak-coupling limit of a. Defining \ =
¢°/167°m’, we have found that

—1 4+ X = N, (5)
135,

a =
§ (+. Tiktopoulos and S. B. Treiman, Phys,
B711 (1964).
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where f(u) is a definite integral which we have
calculated analytically for p = m, and numerically
in general. Note that the O(\) term is independent
of the mass of the exchanged particle.’

The zero-energy Regge pole at I = «(0) gives
rise to a behavior of the forward scattering ampli-
tude as s”'” in the crossed channel when s, the
square of the center-of-mass energy in that channel,
becomes large. Assuming that a dispersion rela-
tion with the appropriate number of subtractions
holds, the high-energy behavior of the scattering
amplitude and that of its imaginary or absorptive
part are the same.” The absorptive part A (s) satis-
fies an especially simple linear inhomogeneous
integral equation,” whose kernel and inhomo-
geneous term are both positive. This enables one
to place upper and lower bounds on the solution
using certain trial-function methods.’

By placing such bounds on A4 (s), we show that «
is a characteristic value of a homogeneous linear
integral equation. This equation cannot be solved
exactly, but standard methods can be used to get
upper and lower bounds on «, leading to the results
stated above.

In Sec. II we show that the high-s behavior of
A(s) can be learned from a characteristic value
problem. Methods for bounding this characteristic
value are described in Sec. III, and applied in
Seec. IV. Section V is devoted to a brief discussion
of our results.

II. THE HOMOGENEOUS EQUATION

The absorptive part due to the Born term (the
first diagram on the left in Fig. 1) is just A® =
#g°8(s — u°). (The superscript refers to the order
in perturbation theory.) The absorptive part A of
the forward scattering amplitude arising from the
sum of the remaining terms in Fig. 1 is a function
of s, p°, and k*. In what follows we have taken
k* = 0 for kinematical convenience. Then A satis-
fies the following integral equation:®

A@s, p) = AYGs, p”)
2 ’ 2
Q'fq. 2 200 _Als, (p — @7
+ (27:')6 d 95 (q #)9(‘1) [m2 — (p s 9)2]2
The inhomogeneous term A corresponds to the
second diagram on the left in Fig. I, and is given by
A“](s, pﬂ)

_ g {s(s — 4"} o(s — 44°)
167 [(s — p*)(sm® — u'p°) + s(m® — u*)°]

It is convenient to express A as a function of

- (6)

- @
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the invariants u = (s — p°) = 2p-kandz = —p°.
After multiplying the integral in (6) by

1= fdx' 8fz" + (» — 9]

x [ s — 20— 91, ®

and performing the ¢ integration, one obtains

A, 2) = A, 2)

g’ / _ o AW, 2)
I lﬁwzufdu (. z.) ‘[_ dx (m* + 2y

where

(9)

(10)

z, =u — 44"
and
z- = uwfufz + u’[1 — @' /u)]™"}. (1)

For kinematical convenience we have taken
external lines massless. The physical process being
considered, the scattering of two massless particles
(via the sum of all but the leftmost of the graphs
of Fig. 1) corresponds to = = 0. The solution
to (9) must hence be obtained for all © > 44* and
all z > 0. Of special interest is the high-u behavior
of the solution A (%, z) for fixed x. This is of course
identical to the high-s behavior of A.

Upper and lower bounds will now be placed on
the solution of (9), using a method described by
Tiktopoulos and Treiman.® Suppose

¥ =¢ + Ky, (12)
where ¢ > 0 and K(z, z') = 0 for all z and z'.

Let ¢ be a trial function, and let K be a kernel
such that K > K for all z and 2’. Suppose

v—Kg>¢ =1y — Ky forall z. (13)

Then (y —¢) — K@ — ¢) + (K — K)¥ >0, so
certainly ( — ¢) — K@ — ¢) > 0. If now 1 +
K + K* + -+ -+ exists, and is a positive operator,

V= (14)

The inequalities can of course be reversed. Equation
(9) satisfies all the criteria named above. Its kernel
is a Volterra kernel, and 1 + K + K* + ... + is
in fact a finite series at any given s.

A. The Upper Bound

We can replace the kernel and inhomogeneous
term of (9) by larger ones, and are guaranteed that
the solution A (u, ) of the resulting equation is an
upper bound to A(u, ). In the rest of this paper!



MASSIVE PARTICLES IN BETHE-SALPETER EQUATION

take m = 1 and A = ¢°/16x". The following re-
placements are convenient: (1) Replace z, by o,
(2) Replace the inhomogeneous term A (u, z) by
a larger one

A, 2) = (¢'/16m)[u/(z + 41", (15)
where a 4 1 > 0. The majorized integral equation
is then

4 a+l
g | _u
A, ) = 10m[‘+4u2]

A , A, :r)
2Mlaw [ G2, a0
which has a solution of the form
Au, 1) = u¢a(x) (17)
as long as ¢, (z) satisfies
S S .
60 = j6
" 3 $a(z) .,
A -Il.) $ d$ Elztp?/7(1—£)) (1 + x’)z dz . (18)
Define x.(z) = ¢.(2)/(1 + 2),
g.(x) = [1/(1 + 2)](g*/16m)[1/(x + 4u*)"*"],
and perform the ¢ integration in (18). Then
Xa(2) = ga(7)
_ xa(@)
£ +1f &' L, ) T 0 ¥z A9
where
Lz, =)
- [x-l—:c + o' = (@ + 2 + ) —4::::}*]““
- 2z
(20)

Since the term g.(z) is square integrable on
(0, @), and since the kernel of (19) is square inte-
grable, the Born series solution of (19) converges
whenever A is less than a certain value \,.° The
quantity A, is the lowest value of X for which (when
a is fixed) there is a solution to the homogeneous
equation:

A = ’ x"
x:(z) -._—mj; L(I'x)(1+$)(l+x)
(21)
Since
g.(z) > 0,
Xo(@) = [(1 + AK + NK* + -+ +)g.](x) > 0,

¢ 8. Weinberg, Phys. Rev. 133, B232 (1964).
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as is necessary in order that A (u, ) =u"(1+2)x.(2)
provides an upper bound to A (u, ).

Since the kernel of (19) is monotonically de-
creasing in «, the Born series converges for all
a > a, if it converges for @ = «.. For a fixed value
of A, there is a highest value of « for which (21) has
a solution. Call this value a,. The Born series of
(19) converges for all & > «a,.

The upper bound to A(u, x) is now constructed
by letting & = @, + ¢ where ¢ > 0. Then (19) has
a positive solution x,.(z), and

A, 2) < (1 4+ 2)ux.(2).

The bound (22) is useful for all z, 0 < 2z < o,
only if x.(z) < »,0 < z# < «. The solution to
(19) is not a priori finite at the origin, but only
square integrable on (0, «).” However, using the
Schwarz inequality, we find

(L(z, ')} dz':l*

a :- 1 [j: 1+ z)

x| [tz ar ||

Xa(@) < gal2) + const z |[x.|| < e,

where ||x.|]| = [[3 [x.(2)}* dz’]". In particular,
x «(0) exists.
Since ¢ may
have shown:
If lim A(u, 2)/u” =

u—s

(22)

Nal®) € g,(:l:) +

and since L(z, =) < 1,

be made as small as desired, we

const, o« < a.  (23)

B. The Lower Bound

If a solution A(u, z) to (9) is guessed, and it
turns out that A — AKA < A", then A < A,
as was mentioned above. Assume a trial function

Au, z) = cllu — 3, — (1 + a)z]u¢.(z). (24)
The restrictions on the parameters are:
c >0, «@ >‘—l, 25)
a>0, s, > 44°(1 + a).

Let s, be an arbitrary parameter, subject to the

condition
s 2
1+a?“{2[1+a:l +“}

(The reason for this condition is given in Appendix

7 F. Riesz and B. Sz-Nagy, Functional Analysis (Frederick
Ungar Publishing Company, New York, 1955), p. 150.

(26)
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A.) The definitions o, =
s,/(1 4+ a) are useful.
We now choose the parameters so that

A —)2\KA < AW (27)

directing all efforts toward obtaining the highest
possible value of « consistent with (27).
First, for s(=u — z) < s, + az, demand that

Alw, z) < A, ). (28)

Since K > 0, this will imply (27). Now (28) can
be satisfied as long as

$a(z) < M/ + 2)*" (29)

for some M, so let us adopt this restriction on the
¢« to be used in (24). To satisfy (28) is then merely
a matter of choosing small enough ¢. For s > s, + az,
demand that

3{1/(1 + a) aﬂd o,

for all u, x,

A,z -2 [ aw o, — =)

e dz’ A@’, z')
X f a+ey <
This condition will certainly imply 4 — KA < A,
Since s, > 4u*(1 + a) and u > s, + 44°(1 + @), if we
define

(30)

- ou'fu
“E= Tt Gm e

we have that z, > ,, so a condition that implies
(30) is

A@w, z) — 1—’: f du' 0(z, — )
A(u, z! <.

IR (32)
This will be satisfied by the trial functmn
A, 2) = cb(s — s, — az)u’¢./(x)
for
s28 taxforu >s + (14 a)z]
if
$u@ — A [ £ dt 06 — x)
x [ s <o, @9
where
2 = a ¢/l [ =
it z ¢/l + (00/2)] — @ (34)

gz + /(1 = 9]

3
i
]
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The above manipulations eliminate the variable u,
reducing the problem to a one-dimensional one.
Now find the maximum value of « for which equality
can hold in (33). [In Appendix A we show that the
conditions (26) and (31) guarantee that such a
value always exist.] Let ¢, be the corresponding
eigenfunction. Since the kernel of (33) is every-
where non-negative, this eigenfunction can be
chosen everywhere non-negative (see Appendix A).
We may choose ¢,.(0) = 1. If « is then increased
by an infinitesimal amount, the inequality (33)
will be satisfied, since the kernel of (33) is monotoni-
cally decreasing in «. It is shown in Appendix A that
the eigenfunction ¢, satisfies ¢, < M/(1 + z)**.
Hence, the trial function satisfies 4 — KA < A"
for all values u > 4y*, 2 > 0, and thus provides a
lower bound to A (u, z). We shall now show how to
obtain the “best possible” lower bound.

Recall the definition x.(z) = ¢.(z)/(1 + z).
Equality in (33) is equivalent to the equation

0 = i1 [ e g T @
where
Ly(z, 2) = & — &2, (36)
= {z + 2’ + o
= [+ 2’ + &) — dzz'}}(2)7',  (37)
and
£, = 2'[1 + (o0/2)][1 + (o0/2)]o7 ", (38)

as can be seen by reversing the order of integration
in (33) and performing the £ integral. Let «, denote
the highest value of « for which (35) has a solution.
It is a continuous function of o,. As ¢; — =, the
kernel of (35) remains bounded and the traces of
all its iterates exist. In fact,

lim L,(z, 2") = L(z, 2),

where L(z, =) is just the kernel of (21), defined in
(20). Hence as o, — @, o, approaches a, arbitrarily
closely from below. This means that, by choosing
o, large enough [and satisfying (25), (26), and a
restriction on ¢], we can exhibit a lower bound to
A(u, z) of the form

Au, 2) (@ + Dzlpa(),
where e is arbitrary small, so that if

(39)

= cu""0u — 8 — (40)

lim A(u, z)/u® = const, « 2> ay. (41)
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Combining (41) with (23), we have the desired
result: let «, be the highest value of a for which (21)
has a solution. Then if

lim A(u, z)/u” = const,

u—®

a = ag.

The kernel of (21) is monotonically decreasing
in a, 80 a,(A) is a monotonically increasing funection.
Its domain is 0 < X < « and its range is
—1 € @ < «. Hence it has a unique inverse \,(«)
which is the lowest value of X for which (21) has a
solution (for fixed « between —1 and «). We shall
now obtain upper and lower bounds on Ay(a), and
then invert for the bounds on e,()).

III. BOUNDS ON EIGENVALUES

A polar kernel K(z, z') is one which can be ex-
pressed as

K(z, z') = {@)8@, 2)[{(=")]", (42)

where S(z, ') = 8(z', ). The kernel of (21) is
polar, for example. Consider the equation

6@ = [ K@, 2)@) d',  (43)

where K is polar. Its eigenvalues are the same as
those of

v@) = [ 8@ adye) a, @)

and its solutions are ¢(z) = f(z)¢¥(z). Now, a sym-
metric kernel S(z, ') has at least one characteristic
value )\, given by

i (¥, ¥)
M, 8y

where a function belongs to L* if

- i
i =[ [ e v | < o
The inner producet (¢, ¢) is defined by

Ao = (45)

o) = [ dov@e@.
For any trial function ¢, e L*, by (45),

o < (¥, ¥)/(¥rs S¥0),

providing a simple upper bound to A,.
In principle, one can compute the lowest eigen-
value of a polar kernel K as closely as desired.”

(46)

8 R. Courant and D. Hilbert, Methods of Mathematical
Physics (Interscience Publishers, Inc., 1953), Vol. I, p. 122,

* 8. G. Mikhlin, Integral Equations (Pergamon Press, Inc.,
New York, 1957), p. 90.
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It can be shown that

— 1
H,=Tr(K") = 'Z_;(M)u '
where \; are the characteristic values of K. Since
the eigenvalues of a polar kernel are real (if it is
related to a symmetric kernel via a real function),
H,, > 0 for n > 1. Suppose the eigenvalue A,
occurs with multiplicity r,. Rewrite (47) as

1¥ %“
To i-Zr. ()\i ’

Since \; > A, for j > r, we see that ¢, — 0 as
n — . Then

n =2, (47)

H,, = {3: (1 + €.), where e, =
0

lim (H,) ™" = A2

n—sx®

(48)

and
Mo = (ro/Ha)™ forall n. (49)

The above methods will now be applied to obtain
bounds on the lowest characteristic value \,(«)
of Eq. (21).

IV. RESULTS
A. Strong-Coupling Limit

Equation (21) may be rewritten as an equation
with symmetric kernel using the definitions

= l‘z/xn
(@) =y %0 ),
z=a+1;

we then obtain

x 1* " dy’
v = 32 [ T e F e
X [a = {a® = 1}'),  (50)

where

a = coshv + ¢, (51)

v=3%log (¥/y), (52)
and

L= 3y (53)

Minorization of the kernel increases the lowest
eigenvalue, as can be seen from (45). The kernel
of (50) may be minorized using the inequality

a—{a®— 11 > exp (—{* + 20}, (59
which is equivalent to
Hlog (@ + (@ — 1) < @/2) + ¢ (55)
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(equality holds in (55) for ¢ = 0, and the inequality
may be verified for ¢ > 0 by differentiating both
sides with respect to {). An equation with lowest
eigenvalue larger than that of (50) is hence

ok ¥(y") dy’
W= [ T @/
X exp (—zfo* + 21}Y). (56)

Ta obtain an upper bound on \,, one can now
use (46), with S the kernel of (56). Choose a trial
function

vy = 6[(*/2) — yl,

where v is an arbitrary parameter. Then

(‘prr \br) = 72/2"31

(57)

and
(¢., S¢.) > 2{@’[1 + (/)]
X fuv "y j; dy’ exp (—z[o" + v*/2"}})

o 2y fw ~20/% ~(frey)?
_-Zu,uz[l 4+ (72/“222)21 8 € df e .

Now
[ ase=ert =y,
S0
lim e B8 > 2 max (K@) (58)
Since max, [v'K,(y)] =~ 1.16 at v ~ 245, we
have finally
lim z/(\ /)t > (2 X 1.16) = 1.23.  (59)

]

To obtain a lower bound on X\, return to (21).
Define H, = Tr (K") where K is the kernel of (21).
From (49) (since K and A\, are positive) we have

X > (H)™ forallm > 1. (60)
Define
7(z, z’)
_x+ 24— {42+ u) — daa' )
- 2(xz’)} (61)
Then H, can be written
i g w e —d.:l:,-__ A
(62)

1 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G.
Tricomi, Higher Transcendental Functions (MeGraw-Hill
Book Company, Inc., New York, 1953), Vol. 2, p. 82.
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(identify z,,, with z,). The following change of
variables is convenient. Multiply (62) by

f = f_ﬂ AW (W)

and define pand w; (1 = 1, --- , n) by

z:' = pexp (w),

‘V = “Zw.-.

(63)
(64)

Then

o [ [ [e)

Tl dwi a2 1y
X.I.I,{(1+ae“")* =4 1)]}’ e

where
a; = cosh 3(w; — w41)
+ $oi’ exp [3w: + wi)].

Now divide the region of integration over the
w; into two portions. Call E the region where
—e < w; < efor all ¢ and some fixed ¢ > 0. Call
R the complement of this region. For large z, we
shall show that the contribution of region R to H,
is no greater than z™" exp (—2ez/n), while that of
region F is no greater than a constant times z'™*".

For even n, if D 7., @, = 0 and at least one
w; > ¢ then one or more of the quantitics [w; —w, 1|
is at least 4¢/n. This implies that in B one or more
a, is at least cosh (2¢/n), so one or more a; — (a— 1)}
is at most exp (—2¢/n). Denoting the contribution
of region R to H, by (H,)s, we see from (62) that

(H)r < 27" exp (—2e2/n). (67)

(66)

In region E, every a, is greater than or equal to
the corresponding a; defined by

a; = cosh. %(OJ,' S CIJ.‘+1) + %P”ze‘_" (68)

Hence

(H)g < mz™ f: "V dp f_ f_ a(zlw)

7 dwi — (a? — DY
XI_I{(I o~ @ 1)1} (69)

This can be further majorized by neglecting the
factors in the denominator and replacing the limits
on w; by —o and «. Since the 7th factor in the

product is then a function only of p and the differ-
ence w; — w,,;, the majorized integral can be
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simplified considerably. Perform the integral over

w, to eliminate the s-function. Then w, - E’,.‘:} w..
Define
v.r=m_2w'-”, i4+1,--,n—2;
= n=1
Uy = w—""z—w" = (w....: + Ew)
i=1
S0 t.hat dv, LI du,._. o (n/2"_‘) dﬁh Sl dw._;.
Note that a, — (ai — 1)* < 1. Then

e < L[2] [ o ao ot

where
¢ = [ dfa—@ -0l

and

aEcoshv+p2i o

We shall now scale out z (in order to pass to the
z — e limit) and u°. Define 8 and v by

B =z,

72 = Pyze—.zz.

Then
(H)x < [ﬁi]z [ avpwr, @
where
pe)= [ dsla—@ -1} @)
and
a = cosh (8/2) + (/28). 72

We have chosen g and v so that lim,.., D(y) is
finite and nonzero for all ¥ > 0. The quantity
{a — (@® — 1)!}* may be written exp {—z log
la 4+ (@® — 1)!]}. Expand log (@ + {a* — 1}}) ina
power series in 1/z; the result is

log (@ + {a® — 1}}) = 1/ + ¥ + 06™).
Hence
lim D) = f dg e+ = 29K ()"

—m

and

lim [(H,)g"""]

s % [ 2.]‘ f ¥ dy [K)IT. (73)

881

Since (49) holds for all x and for all z, we may take
the large-z limit while letting n tend to infinity as
well. If we choose n = largest even integer smaller
than 2% where A > 0, we see from (67) that
2'((H.)z]"" tends to 0 as z— o . However, 2*[(H,)5]'"
tends to (at most)

_:—‘ m‘?'x [VaKl('Y)}

as ¢ — o for this choice of n, and since lim,..

@ + ¢")'" = max (p, ¢), we have (letting € be as
small as we like)

I.l_l.'E ' {H,)") < ili max (Y EK.())

or
; A\
lim z/(;ﬁ) < (4 X 1.16) =147,

From the bounds (74) and (59) we see that
a = z — 1 behaves as (g/u)? for large g.

(74)

B. Weak-Coupling Limit

To obtain an upper bound on \,, apply (46) to
(50) using the trial function

@) =1+ /)™
Then (46) implies
N < 2[I(n, 32)]7, (75)
where
dy/u’
o (L+9/ u’)?

d:’/ , .

and a is given by (51), (52), and (53).
To obtain a lower bound to A, apply (49) to
(50) for n = 1, obtaining
No 2 2[I(u, 2)]7). (77)

The bounds (75) and (77) are especially close
to one another for small z, as can be seen by ex-
panding I (g, z) in a Taylor’s series in z about z = 0.
Note that I'(x, 0) = 1. Writing

I(g,2) = 1 4 2I(s, 0) 4+ 32°1..(u,0) + -+ +,
we have

(I, D)7 = 1 = $aI.(u, 0) + OG)

I, 8) =

(76)

and

U, 321" = 1 — 32I,(u, 0) + O(2),
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TasrLe I. The function f(u) for selected values of u?.

Iy S(u)

0 1.00
0.01 1.02
0.05 1.07
0.10 1.12
0.50 1.37
1.00 1.56
5.00 2.31
10.00 2.77
50.00 4.07

which means that

a=—1+X=¥f() +00),  (78)
where
) = =31, 0) = fu (T%
dy' /i’ , )
- [., T+ y /oy et e = Y, (@9

and a is given by (51), (52), and (53).

To order X\ (78) is just Lee and Sawyer’s weak-
coupling limit." The coefficient of X is independent,
of the mass p of the exchanged particle; the de-
pendence on u first enters in the A\* coefficient.

For p = 1, (76) may be done in closed form (see
Appendix B). Its value is

I(1,2) = 1 + 42[22¢'(3(z + 3))
— +9¥QElz+1]) — @ —H¥{E{z+2))], (80)

where

V') = (&°/d2") log T'(2). (81)
Then
I1(1,0) = 4/9[¥'(3 — ¢'()] = —3.125"
Y
* i)

u* (m;.)a:)
Fic. 2. Function f(u).

"M E. Jahnke and F. Emde, Tables of Functions with
Forlﬂ;rdae and Curves (Dover, New York, 1945), 4th ed.,
p- 17.
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S0

(1) = 1.56. (82)

The behavior of I(p, z) as g — 0 is interesting
since it is not analytic in x* at g = 0, as may be
verified by computing I,(u, 0) and letting up — 0.
The integral then diverges logarithmically. The
limit of I(u, 2), as g — 0 exists, is

I0,2) =1 — 22 + 22%¢/(1 + 2) (83)
(see Appendix C), so (78) gives
ae= =1 4N <=NE£000 (84)

in agreement with the result obtained from Eq. (2).
One can show that f(u) = 1 — O(’ log *) as u — 0.

The values of f(u) for selected values of u have
been computed numerically and are given in Table
I. A graph of these values is given in Fig. 2.

V. SUMMARY AND CONCLUSIONS

We have been concerned with the high-energy
behavior of the absorptive part of the forward
scattering amplitude in the ¢* ladder-graph ap-
proximation. Some consequences of letting the
exchanged particles be massive were noted.

The absorptive part satisfies an inhomogeneous
linear integral equation (9), whose solutions can
be bounded from above and below. By placing
such bounds we have shown that the high-s be-
havior of the absorptive part is determined by a
homogeneous equation (21). If A(s) grows as s“,
a is the highest characteristic value of this equa-
tion. Equation (21) was first studied by Ceolin
et al.,* but we felt that a rigorous proof of its rele-
vance would be useful.

Note added in proof: An equation equivalent to
(21) may also be obtained by applying a type of
Laplace transform to (9) to reduce it to a Iredholm
equation in the single variable z."*

Upper and lower bounds have been placed on «
in both strong- and weak-coupling cases. The
results are:

(1) Strong coupling:

5 e
1.23 £ lpl_'rE W < 147, (85)
(2) Weak coupling:
a=—14+N—Nfw, (78)

128 Nussinov and J. Rosner, J. Math. Phys. (to be
published).
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where
Jw) =1 — O(u* log u) as u—0,
(1) = 1.56,

and the general f(u) is given by Fig. 2 and Eq. (79).

The dependence of « on the ratio g/ for strong
coupling is entirely reasonable. In potential theory
1/p corresponds to the range of the potential, so
we find that, in the strong-coupling limit, & is a
function of the (dimensionless) product of strength
and range. Since g has the dimensions of a mass,
we see that, in the strong-coupling limit, « is inde-
pendent of the mass of the particles forming the
bound state (i.e., the horizontal lines in Fig. 1,
of mass m).

The analogy between a Yukawa interaction and
the ladder-graph approximation in g¢® theory can-
not be applied to Regge-pole behavior in the strong-
coupling limit, as a comparison of (1) and (4) shows
(identifying X with ¢g* times a factor).

The sensitivity to the mass of the exchanged
particle is peculiar to the ¢° theory. It stems from
the Fredholm nature of the ladder-graph Bethe-
Salpeter equation.® In a similar ¢* model the Bethe-
Salpeter equation is singular.® The ¢' interaction
is analogous to a singular potential behaving as
1/7* at the origin, whose range one would expect
to be less crucial in determining the highest possible
angular momentum of a bound state. This is the
case: the high-energy behavior in a ¢* model analo-
gous to the ladder-graph model is independent of
whether or not any of the internal particles are
massive.’

ACKNOWLEDGMENTS

Part of this work was done at the 1964 and 1965
Summer Institutes for Theoretical Physics at the
University of Wisconsin. I am grateful to Professor
R. G. Sachs and Professor K. W. McVoy for ex-
tending the hospitality of the department and
arranging for computer time at the UWCC. At
Princeton, my thanks to F. Gilman, J. Noble,
0. Lanford, and Dr. G. F. Tiktopoulos for helpful
advice. Finally, my special thanks to Professor
Sam B. Treiman, whose constant interest and
critical suggestions aroused my curiosity and
channeled my energies.

APPENDIX A. HOMOGENEOUS EQUATION
FOR THE LOWER BOUND

We show in this Appendix, (1) that (35) has a
highest characteristic value @ = @, and (2) that
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the corresponding eigensolution can be chosen non-
negative and obeys (29).

Defining ¢.(z) = z“*"x.(z), (35) becomes
an equation for ¢ with symmetric kernel. For any
fixed « > —1 there is, hence, a smallest value of
A (call it A,) for which the equation has a solution,
as long as its kernel does not vanish everywhere,
(The condition (26) insures this.)

As « ranges from —1 to «, A, will range from
0 to «. The kernel of (35) is monotonically de-
creasing in «. IHence for a fixed X, 0 < A < o,
there will be a largest value of « (eall it «,) for which
(35) has a solution. This solution is the function for
which the expression on the right-hand side of (45)
actually attains its minimum. If the solution were
oscillatory we could construct a smaller such ex-
pression by substituting |¢| for ¢. Hence it is non-
oscillatory and can be taken nonnegative.

We shall now prove the bound (29) for the solu-
tion to (35). First of all, |¢.(z)] < e for all z. This
may be demonstrated using the fact that ||¢.]| < =,
where ¢.(x) = *““*Y¢.(z)/(1 + z), and applying
the Schwarz inequality to (35). Now we can prove
(29) inductively. Assume

$a(®) < M'/(1 + 2)°,

Using the inequality derived from (35):

e
¢,.(z)sa+lfo 5

0<p<a (A]

dx’
+ z')*
2z’
A [m + 2" + 4

]“'es.(x), (42)

it is easy to show
¢.(z) < M"/(1 + "',

where ¢ > 0. A final application of (A2) then gives
the desired result (29).

APPENDIX B. 1(1,2)
In this Appendix we perform the integral (76)

for u = 1. The following change of variables is
convenient: define 4 and w by
coshw = 3[w/y) + @'/9)'], (B1)
coshu = 3((y/y)* + ('/9)'] + 2D, (B2)

so that (76) becomes

I(1, ) = 16 j; " dusinhue™J@w), (B3)
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where

cosh u — cosh w )
1 — 4 cosh u cosh w + 4 cosh® u)*
(B4)

J(u)=foudw(

It can be shown that
J@w) = }sinh® u(d®/du’)(u/{1 — e **}) (B5)

so that, integrating (B3) twice by parts, noting
that the boundary terms vanish, and substituting
v = 2u, we obtain

1 [ vdp
10,9 = 3 [ 2%
X [(z . 2)28-(1—2)1 _ 4(2 . 1)28—(1—1)11
+ Gzze—sv . 4(2 + 1)2e—(;+1)u + (z + 2)2£—(z+2)-]‘

(B6)
Now
A oy, @D
where
vk = ++1 log T'(2)
= f= 1)”’,§(z+ =1 (BS)

(see Ref. 13, Chap. 1), so, finally,

I(1,2 = (1/2D[e — 2)’¢'(lz — 2)

— 4 — 1)*¢'(3lz — 1)) + 6°¢'(31z))

— 4+ D'WQEle + 1) + @+ 2" Gl + 2D).
(B9)

13 A, Erdelyi et al.,, Op. cit., Vol. 1.
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Using the identity
V(A +2) =y -7,
this can be rewritten as
I(0,2) = 1 + $2[2z¢'(3{z + 3})
=@+ PGz + 1)) — ¢ — Dy'Glz + 2)]
(B10)

[see Eq. (80)], which shows that I(1, z) is free of
singularities for z > —1, and hence can be expanded
in a Taylor’s series about z = 0.

APPENDIX C. 1(0,2)
Substitute v = u*(yy")},
= 3 log (/) in (76).
Then, letting g — 0,

10, 2) =4f dwf -
0 [v]

X (1 + 2v cosh w + ¢°) % *°. (C1)

Now

f vdr (1 + 20 cosh w + °)*
0

so integrating (C1) by parts,

-20: d&!

10,2 = —1 — 22 + 82 f o

= —1 — 2z + 2°¢/(2),
or, using (B10),
1(0,2) =

1— 242801 +2. (C2
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The semigroup of statistical operators, and the unitary group of time translation operators gen-
erated by the same Hamiltonian of a nonrelativistic fermion field, are naturally imbedded in a holo-
morphic half-plane semigroup. The statistical expectation values of products of time-dependent
operators are then boundary values of holomorphic functions which allow a Bochner integral repre-
sentation with a Cauchy kernel. The general time-temperature-dependent Green’s functions permit a
concise spectral representation. It is suggested that a thermodynamic perturbation theory should
treat the Heisenberg and Bloch equations simultaneously in terms of a perturbation theory for holo-
morphic half-plane semigroups generated by semibounded self-adjoint Hamiltonians.

1. INTRODUCTION

HE traditional approach to quantum statistical

mechanics is based on the unique canonical
quantization of classical Hamiltonians for systems
with finitely many degrees of freedom together with
the ensemble averaging in terms of traces involving
a statistical operator.' The core of the problem lies
in establishing the existence of a thermodynamic
limit (such as N/V = const, ¥V — =, N = number
of degrees of freedom, V = volume) and its evalua-
tion for the quantities of interest.”

On the other hand, inspired by relativistic quan-
tum field theory, attempts have been made to con-
struct what might be called a nonrelativistic sta-
tistical quantum field theory, which from the very
start works with systems of infinitely many degrees
of freedom. The quantization is achieved in terms
of a representation of the canonical commutation
relations (CCR) for bosons or anticommutation rela-
tions (CAR) for fermions. It has been shown in
several detailed studies of the commutation relations
that the uniqueness up to unitary equivalence is
lost for systems with infinitely many degrees of
freedom.® Thus the problem arises of constructing
the appropriate representation for a given system.

* Supported by the National Science Foundation.

! The uniqueness up to unitary equivalence of the operator
representation of the canonical commutation relations (CCR)
in the Weyl form is a well-known result due to J. von Neu-
mann, Math. Ann. 104, 570 (1931), who also championed the
statistical operator [or density matrix; see for example his
book, Mathematical Foundations of Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1955)].

? For recent resu{ls see L. van Hove, Physica 15, 951
(1949); C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952);
also D. Ruelle, Theoretical Physics Institute lecture notes,
summer 1963, University of Colorado, Boulder, Colorado;
and J. Ginibre, J. Math. Phys. 6, 238, 252 (1965).

3 L. Garding and A. S. Wightman, Proe. Natl. Acad. Sci.
U. 8. 40, 6, 622 (1954); R. Haag, Kgl. Danske Videnskab.
Selskab, Mat.-Fys. Medd. 29, No. 12 (1955); 1. E. Segal,
Trans. Am. Math. Soc. 88, 12 (1958); H. Araki, J. Math.
Phys. 1, 492 (1960), where also other references are given,

Cyeclic representations of the CCR for the infinite
free Bose gas were treated by Araki and Woods,*
while Araki and Wyss® dealt with the CAR. We shall
be concerned with the CAR. According to the last-
named authors their cyclic representations are equiv-
alent to cyclic *-representations of the abstract
CAR-algebra A(R) in the algebra B(3¢) of all
bounded linear operators on a separable complex
(H)-space 3¢. Such representations can be char-
acterized up to unitary equivalence by positive
linear functionals on A (R) to the complex numbers
C. The reconstruction proceeds via the Gel'fand
construction which due to the special nature of the
CAR still leads to bounded operators even though
A (M) is not necessarily a complete normed algebra.
If © is some open connected subset of [-dimensional
(I = 3 for cases of physical interest) Euclidean
space, then i could, for example, be realized by the
Schwartz test function-spaces® i = S(0) @ S(0)
(two components of spin). If © = R' a representa-
tion a: A-(R) — B(3¢) gives rise to a representation
of the CAR as operator-valued tempered distribu-
tions in the space arguments if the appropriate
continuity is ensured. Certain invariance groups
(translations, rotations, etc.) are then also easily
incorporated in the representation by defining the
action of these groups on i and hence on A(R) in
the obvious fashion and requiring the representation
functional to be invariant with respect to these
transformations. Furthermore, a charge concept can
be introduced via an involution on M (i.e., complex
conjugation of test functions) and leads to the “rep-
resentations with charge conservation,” which are

4 H. Araki and E. J. Woods, J. Math. Phys. 4, 637 {1963).

8 H. Araki and W. Wyss, Helv. Phys. Acta 37, 136 (1964).
See also D. Shale and W. Forrest Stinespring, Ann. Math.
80, 365 (1964). _ _

¢ L. Schwartz, Théorie des Distributions (Hermann & Cie.,
Paris, 1957/59).
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equivalent to the cyclic *-representations of the
algebra of “observables” Wy(M). The latter is *-
isomorphic to the zero charge part of €. (N) and its
representations are again characterized by positive
linear functionals. We assume given a representation
of the CAR for © not necessarily unbounded or
equal to R'. The dynamics shall be specified by a
self-adjoint lower semibounded linear operator H
with domain D(f) C 3¢. We are not concerned with
the problem of whether and how this “Hamiltonian”’
H can be expressed as a “function” of the CAR
operators.” H will characterize the equilibrium dis-
tribution in terms of the statistical operator W(g8) =

exp (—pH), 8 = inverse temperature, as well as
the wunitary time translation operators U(l) =
exp (#tH).

In Sec. 2 we deal with the relation between W(8)
and U(Z) by means of the theory of operator semi-
groups holomorphic in a half-plane. In Sec. 3 we
pursue the restrictions on  due to the requirement
that W(B) be an operator in the trace class.® Also
statistical expectation values (or correlation fune-
tions) of time-dependent operators in W.(M) [we
do not distinguish notationally between 2.(H) and
its given representation] turn out to be boundary
values of funections holomorphic in a very simple
tubular domain. A formula identical with Bochner’s
formula for square integrable boundary values is
given which relates the values of a certain class of
holomorphic functions to their values on the dis-
tinguished boundary of the tube by means of an
integral with a simple Cauchy kernel. In Sec. 4 we
describe a general and concise spectral representa-
tion of the statistical Green’s functions at finite
temperatures and valid in the physical region of the
time—temperature variables.

We observe that the simple relation between the
time and temperature dependence of the statistical
expectation values (expressed in terms of half-plane
semigroups) has been obscured by the somewhat
uneritical use of the formal analogy between the

7 F. Coester and R. Haag, Phys. Rev. 117, 1137 (1960);
H. Araki in Ref. 3. It is worth noting in this connection that
in the treatment of the infinite free Bose gas in Ref. 4 the
unitary time translation operators U({) = exp (iHt) were
found net to belong to the von Neumann algebra generated
by all CCR operators in the Weyl form.

3 Under these circumstances H must have a pure point
EEectrum of finite multiplicity, and if H is to be a Hamiltonian
the corresponding system must generally have a finite space
extension. There still remains the need to establish a thermo-
dynamic limit for sequences of such systems, whose volume
tends to infinity and whose limiting system is no longer
describable by a density matrix of the trace class. Such a
program was recently formulated and studied by Ruelle
(D. Ruelle, Lectures at Institut d’Etudes Scientifiques,
Cargese, Corsica, summer 1965),
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Heisenberg equation of motion and the Bloch equa-
tion (the analogy is of the same limited character
as that between the “classical” Schrodinger equation
and the heat equation). The simple fact is that the
difference of a factor ¢ [=(—1)"] induces all of the
difference between a (strongly) continuous unitary
group and a self-adjoint semigroup restricted to the
positive real axis. The above formal analogy has
been used in the thermodynamic perturbation theory
of the Bloch equation which emulates the methods
of the Dyson—T'eynman—Schwinger perturbation the-
ory for the Heisenberg equation of motion. In partic-
ular, that perturbation theory is based on the intro-
duction of temperature-dependent quantities,

a(B) = "a(0)e",

where a(0) is some (fermion)-operator and 8 a real
number (the inverse temperature). While such a
transformation is quite appropriate when €' is
used instead of ¢ it is dangerous here, since for
physical positive 8 the operator ¢ is unbounded
together with H. As a consequence, the above trans-
formation in no way represents an equivalence trans-
formation, as it maps bounded operators into un-
bounded ones in general.

It is our contention that it is undesirable to work
with the Bloch and Heisenberg equations (for the
same /) independently. Instead of rotating the
time variables into temperature variables, treating
the resulting pure Bloch problem with the aid of a
perturbation theory based on the above transforma-
tion, and returning to real values of the time varia-
bles by analytic continuation in the temperature
variables, one should treat both equations simultane-
ously. This is very natural and simple since both the
Heisenberg and the Bloch equations are but two
aspects of the same mathematical object: the holo-
morphic half-plane semigroup generated by /. While
the Bloch equation describes the behavior of this
semigroup along the real ‘“spine” in terms of the
self-adjoint semigroup ¢ *”, 8 > 0, the Heisenberg
equation describes its behavior along the buun_dary
in terms of the unitary “boundary” group e'™, t
real. The perturbation theory is thus naturally based
on the unique canonical representation of this half-
plane semigroup as a Laplace-Stieltjes integral over
the projection valued measure belonging to /1. Most
of our notational conventions are collected in the Ap-

pendix.
2. STATISTICAL SEMIGROUP

Given any positive self-adjoint W € B(3¢), thc?n
for e © R., the resolvent R(\; W) is holomorphic in
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the complement of the sector V: 0 < |z < [|[W]],
larg A] < e such that |[|[R(A; W)|| < (sin e |A)7"
in0 < |\ < ||W]], larg M |> e If 9V is the positively
oriented boundary of V, the formula

UGs) = i.f RGN dy, zeC.  (2.1)
2m Jov

is seen to define a semigroup holomorphic in C,
such that U(in) = W" for n &€ I..” This illustrates
that any candidate W for a statistical operator can
always be imbedded in a holomorphic half-plane
semigroup. It will be seen that the maximal domain
of holomorphie existence cannot be made larger than
a half-plane if, in particular, the infinitesimal gen-
erator is self-adjoint and bounded from below but
not from above. Namely, if H is any such Hamilton-
ian, the (unnormalized) statistical operator for the
(grand) canonical ensemble can be represented by
means of the operational calculus for self-adjoint
operators as an exponential “function’ of H: W(s) =
¢ " for s € R,. This exponential has the semigroup
property W(s + s') = W(s)-W(s'), s, s & R, and
tends strongly to 1 as s tends to zero in E,.

The following theorem states that this form of
W(s) i1s the most general form if only the set
{W(s) | s € R,} is required to form a self-adjoint
semigroup satisfying some weak conditions.

Theorem: Let S(R,) = {W(s) |s € R,, W(s) =
W(s)*} C B(3c) form a self-adjoint semigroup such
that

(a) for someea & R,

SUP g<sgmaxtatl.2al ”IV(S)H < =,

(b) for some s, & R., W(s,)™" is an unbounded
linear operator, then

(€ b = —lim (s log |[|[W()|) > —o,
[[W(s)|| = exp (—sh), s € R,

(d) s-lim ., W(s) = 1,

(e) S(R.) has a holomorphic extension S(C,) =
{U(z) | =z € €.} with maximal domain of holo-
morphic existence ',

(f) S(R,) has a self-adjoint infinitesimal gen-
erator —H with domain D(I[) and associated res-
olution of the identity £(\):

9 The general reference for semigroups is K. Hille and
F. 8. Phillips, Functional Analysis and Semigroups, second
edition, Am. Math, Soc. Coll. Publ. 31, 1957. It will, in the
following, be referred to as (HP a-b), where a-b denotes the
particular subsection in question. The above embedding
statement is easily proved with the aid of the resolvent
identity and Cauci\-ly’s formula and is a special case of (IIP
17-7).

QUANTUM STATISTICAL EXPECTATION

VALUES 887
D(H) = {‘P | [ 2a ||E(>\)¢H2} C g,
' (2.2)

He= f NdE(Ne for ¢ € D(H).
h
Also U(z), 2 = t + 1seC, 1s uniquely represented as

Ul) = f T ™ dE(Y) 2.3)

in the sense of strong operator convergence.

Remarks:

(1) Condition (a) can be replaced by (a’) S(R,)
is weakly measurable;

(ii) if in (b) W(s,) ' is assumed to exist as a
bounded linear operator, then S(f2,) will have a
holomorphic extension to an analytical group on
all of € and H will be bounded. Of course, the usual
case of physical interest is the one where H is un-
bounded.

(iii) The condition (d) means that S(E,) is of
class (C,) in the sense of (ITP). Also the transforma-
tion W(s) — exp (s-h)W(s) does not change the
class of the semigroup and is equivalent to the trans-
formation of the generator I — H — hl. Thus
the transformed H — Al is nonnegative and hl — H
is “dissipative”. In the following, we shall often as-
sume that this transformation has been effected,
whercupon {W(s)} becomes a “contraction” semi-
group.

(iv) The “converse’ of the theorem is easily seen
to hold in the sense that any self-adjoint linear
(unbounded) operator I with lower bound A will
give rise to a semigroup defined by Eq. (2.3) with
the properties appearing in the theorem.

The proof of this theorem results from an adapta-
tion of (HP 22.3) to our purposes and notation. The
infinitesimal generator —I7 is defined through
D(H) = {¢ | lim [s7'(1 — W(s))]e exists} C 3¢

e—0+

Heo = lim [s7'(1 — W(s))]e for o & D(H).
8=+04

Condition (b) insures that 3¢, = \UJ,cx (W (s)3¢) is
dense in 3 and hence implies (d). By (HP 16.7)
the spectral classification of the spectral value A = 0
is identical for all s & R,. Therefore 0 & o, (W (s))
for s € R, and W(s)™* exists. Due to (b), S(R,)
cannot be imbedded in a strongly continuous group
on all of R; therefore 0 € o (W (s)) and D(W(s)™")
is dense since 0 & o, (W(s)) \J p(W(s)). Then by
(HP 11.4) W(s) cannot tend to 1 uniformly as s — 0,
and A is unbounded. It follows that the maximal

(2.4)
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domain of analytical existence of U(z) is C, and
not C.

It appears therefore that the semigroup property
together with the mild restrictions (a), (b) already
leads to a type of statistical operator characteristic
of a canonical ensemble, where the variable s is
identified as an inverse temperature.

We briefly quote some of the relevant results
from (HP 10.3, 6; 17.5), where it is shown that
D(H) O 3¢, is the countable union of nowhere
dense sets in 3¢, while (M).e, D (H") is still dense in 3¢.
Also U(z) is uniformly continuous and uniformly
differentiable en C,, uniformly on compact subsets,
such that

—(d/d2)[U(2)¢) = HU()¢ = U(g)Hg for ¢ € D(H);

and for

¢ € N\ D)

nEl+
the series
2" h
— (—F
..; o (—H)'¢

is asymptotic to U(z)pfore < argz <7 — ¢ ¢ > 0
in the sense that

&

kETn—1

lim z~
lz|—0

"[U(m - ‘;’c—lc—m*w} = S (—H)

for n € I,.

There is a number of other formulas which also
reflect one or another of the properties of the ex-
ponential function.

Since [|[U@)el[* < ™ [5 d [[EMNe|* for 2 =
t + 1s, it follows that ||U(2)|| is bounded for |¢| < 1
and 0 < s < 1. Then, by (HP 17.9), the set T'(R) =
{U() |t € R} defined by U(t) = slim ,.,,U(2)
forms the strongly continuous unitary “boundary”
group of the semigroup S(C,) with the infinitesimal
generator 7H. T(R) commutes elementwise with
S(C,) and U(z) = W(s)-U(t). Of course, these
statements can be derived immediately from the
representation (2.3) of U(z) and agree with Stone’s
theorem concerning the integral representation of
strongly continuous unitary groups.

The relationship between the statistical semigroup
S(R,) and the unitary group of time translations
T(R) is thus briefly this: They are generated re-
spectively by —H = 4(:H) and 7H and are both
related to the same half-plane semigroup S(C.),
the former forming the self-adjoint “‘spine’” semi-
group while the latter gives the unitary boundary
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group. We note that the approach to the boundary
is continuous in the strong but not in the uniform
topology of B(3¢) and that every element of S(C.)
has an inverse which is densely defined but un-
bounded. S(C,) is maximal in this sense.

3. STATISTICAL EXPECTATION VALUES

The statistical expectation value (SEV) of a &
B(3¢) is obtained by

(@) = Tr (Wa)/Tr W,

where W is any (unnormalized) statistical operator.
If for some z, & C,, W = U(z,) is in the trace class
@, (Appendix) then it follows with (2.3) that
Uiz) € ¢, forall z &€ C,. We assume U(z) & @
from now on. Then U(z) is compact and its spectrum
is discrete with finite multiplicity away from zero:
URR) = 2 ¢"E;,
iCI+

N2 h=0,N\>Noforg > jdimE; = TrE; =
v; < o, It follows from the monotonicity and con-
tinuity of the exponential function together with
the fact that the eigenvalues of U(z) accumulate
only at zero that the eigenvalues \; of H accumulate
only at + .

T(R) induces the obvious group of *-automorph-
isms on B(3¢) by

a(t) = U(DaU(D)™, a € B(ae), U() ETER). (3.1)

This can be regarded as the boundary behavior of
the transformation

a(s) = U@aU@)*, z€ C..
We note that for z = 28 (3.2) reduces to
a(iB) = W(B)aW(B) = ¢ ac™™" = ¢"ae™™,

and that the alternative to (3.2), a(z) = U(2)aU(z) ",
which also agrees with (3.1) on the boundary of
C., is unacceptable, since U(z)™* is unbounded for
z € C,. A priori it is not clear that the transforma-
tion (3.1) restricted to a & A (R) will be a *-auto-
morphism for A.(N), since a(t) might not even be
in A (R). However, if H is a “function” of elements
in A(N), [its spectral projectors are contained in
A-(R)] this will be the case. At any rate the trans-
formation (3.2) does not have this property for
z € C,. The SEV of interest are of the form (n & I,
fixed)

Tr [IV(B) fI a,’;(f.‘):| 3 p8 E R+s Ev’ e Rr

VELn

3.2)

a4, EUM) for iC I, (3.4
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Due to the cyclic invariance of the trace, Eq. (3.1),
(3.2), and the semigroup property of Ul(z;), these
expressions are recognized as special boundary values
of functions defined in the tubular domain

J.=z€C"|z=t+14,tER, s ER} = (C.)":
Tr [U® — & + B)a;, -+ Ul — t-da;]
= V@B, 5,0 = V32,

where z lies in the “physical region” @,(8) of 3,
defined by

(3.5)

=+ =014 +18,
2y = tg + 1-32 = iz s 3,, Tty (3.6)
zu = tu + isn =, zn . ln—l;

ie., ®@.(8) is the (n — 1)-dimensional submanifold
of C™ on the boundary of J, characterized by

(i) 2 Rez; =0
(i)

Imz;, =0 for z & I}.

The tube 3, is a domain of holomorphy for V (5, z) as
a function of z, since its base R is convex and open.
Furthermore, in order to show holomorphy of V(j, 2)
in J,, it suffices (due to Hartogs’ theorem) to show
holomorphy in each variable z;, ¢ € I, separately.'®
Again, due to the cyclic invariance of the trace, it is
enough to show this for expressions like Tr [U(z,)A4]
for arbitrary A € B(3¢), z, € 3, = C..

Tr (Uz)A] = 2, e™ "4,

1= e

(3.7

Imz, = 8,

where A; = Tr (E;A) is absolutely convergent for
fixed 2z, € C,. For any compact subset D of C, the
above trace is absolutely and uniformly over D,
majorized by

2 exp [—); Im 2(D)] |4, < =,

i€l
where z(D) is any z € D satisfying Im z(D) =
inf ,ep (Im 2) > 0. This proves that V(j, 2) is
holomorphic in J,. Also it is clear that

U@R)A = slim ) e™E; 4,
n—o jEI,

and Tr [U(z)A] < < implies the convergence of the
expression for U(z)A in the trace norm and hence in
the operator norm. Then, upon interchange of sum-
mation, product, and trace, V(j, z) can be written
as the Fourier-Laplace transform of a distribution:

10 8 Bochner and W. T. Martin, Several Complez Variables,
(Princeton University Press, Princeton, New Jersey, 1948).
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> e 1T (|

kE(I4)" iE€ln

V(2 = Tr[

- f aETVG Y, (39)

V(Ja R) = E aﬂ(A - )‘k)Tr H (E"iaii) e SDEM
kE (I4)* i€la
such that
supp Vi, N = U N C @R
KE(TN)*

5 —N) = & s\ — M)

i€la

and

We note the estimates

Tl' ﬁ (Ekiaii)

i€Ja

aj, H (Ekdah)l
iE€EIa"

< w1 el < =,
V€l

S lEhll'

and therefore also

Tr H (Ehaa‘:)

iEln

< a'miny,,, with « = H |la.ll.
{EIa iCin

We shall assume that the spacing between the point
eigenvalues A, of H and their multiplicities ». are
restricted such that V(Z, \) &€ 8{,,. There are a
number of criteria for determining whether an ele-
ment of ©' is tempered,® but we will not pursue this
here.

Since the base R} of 3, is connected and convex
as well as selfconjugate and supp V(j, \) C (£.)"
Vladmirinov’s theorem (see Appendix) gives the
result that V(j, 2) € H,(0, R}), and that

V@G, 0 = lim V(¢ + i)
a=0,sER4"

exists as the unique boundary value in 8’ as s goes to
zero (nontangentially) in R}. Here H,(0; R}) is the
class of functions f(z) holomorphic in J,, such that
for every compact subcone € of R there exist
M(e) < « and G-independent &« > 0, 8 > 0 for
which

liz)| < M(e)d + |2))°’(1 + |s|™) for z € 3°.

Also f € H,(0; RI) implies that D°f, af”, ¢ € C,
and p > 1arein H,(0; B}). B

Let xz,»(\) be the characteristic function of R in
R". xz,»(\) € 8 and, since

supp [V(j, Ne™] C R,

the two distributions can be multiplied to give a
distribution in 8’ such that

V(j,2) = SUV{, Ne ™) (eaa(N); 1]
= F{(V(, N xz.(\); 1]
= {5V, NI*Fle ™ xm. N} ().
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Since
g[e—hxﬁﬂ()‘); !] = iu( H z:)—‘:
iEl

by easy direct evaluation the folding formula gives

the result
.~ _ (2N [ VG 1+ i0)dl
VG, = (L) [ Yiitod
21!' Rn 1!—]1 (Z| o) i:) ’

when the integral is extended over the appropriately
oriented distinguished boundary E" of the tube 3,.
This integral representation agrees with Bochner's
formula'’ derived for f(z) such that

Jus dt f(t + i5)|* < constant (of ).
4. SPECTRAL REPRESENTATIONS

Since V(j, 2) € H,(0; RJ), clearly it is in 0x(1)
for fixed s € R, and it can be multiplied with the
distribution (see appendix) n.(z) € §/,, to give

(3.9)

V.4, 2) = n2)- V(J) 2) € 8ln. (4.1)
Then
V., N 8) =57 [V.(G,2);
= @r [ 51 Y
= ‘l:E,-'U'.')_lV{j, X)B-.sli,-;' (4.2)

ci=l4s

is seen to be the particular boundary value char-
acterized by the sequence ¢ of a function V(j, ), s),
which, due to the support properties of V(j, A), is
holomorphic for A" = [\, --+ )] in the Cartesian
product of (n — 1) complex planes cut along the
positive real axes. It is clear that the weight function
V(j, Ne " can be reconstructed from the discon-
tinuities across the cuts by the formula

G, 3, N)

TEYn

TEya
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VG, Ne? = lim X (] @)
i =04 i i€In*
1=

X V(, N + ioe, 8)]m0-  (4.3)

In this way all the inverse Fourier transforms of the
2" mixed—advanced—retarded functions V,(j, 2)
are boundary values of one and the same holo-
morphie function of N

VG, N8), N E (Cud™™

Similarly, one can arrive at a spectral representa-
tion for the (unnormalized) time-ordered SEV or
Green's functions in the physical region ®(8)."
Let the a,,, i € I, now be elements of %(R) which
anticommute. e, = =1 is the one-dimensional anti-
symmetric representation of v,. It is seen from (3.5)
and (3.7) that, in @,(8), V(j, z) depends only on
i = [tzs T tu] = [ll . it; St = tn-l]'The
Green’s functions are then defined in @,(8) through
(T is the time-ordering operator)

a,-‘(l,.))]

G(8, j, ') = Tr [W(B)T(a; (%) -
=[ an 5T ) T elat0-V(5, 5, 0)
= 5(G(, 5, X); ). (44)
If one uses the ecyclic invariance of the trace
('), \) = V(j, M), and introduces the quanti-
ties

08,0, %) = T (—1)'2m) e

@ (7\:‘ e gy == xf " 3l Xk + ifi)-‘ (4-5)
i_ii;
VG, N = 2 eV, N, (4.6)

' Eyan’
then the Fourier transform in (4.4) can be inverted
by

2r 2 &3 '[8(ZL)n(a() VB, 7, 0); Nln=o

E €y j‘;dﬂ j;‘dx {(_l)n-l 5()\" — Xa‘ st a)e—ﬂi-.

e@’) [@r)(\ — Ri — @ + )] N (@ V), ) a,e0

iday

= 2 e Ld" f Ak [ 3 (=D 5 — Ko — a)e™

riEva’ =

1 8. Bochner, Ann, Math. 45, 686 (1944),

® [@r)(\ — K = a + )]} (@' V)0, Nla-o

iSla
Tk

12 For n 2 this was first derived by L. D. Landau, J. Exptl. Theoret. Ph 3 i 5
) ‘ v L , J. Exptl. . Phys. (USSR) 34, 262 (1958) [Sov. Phys.
J. Exptl. Theoret. Phys. 7, 182 (1958)], For n = 3 this was wriﬁten down in a formula with six terms b_}' V. L. Bonch-
o 8

Bruevich, Doklady Akad. Nauk (SSSR) 126, 539 (1959) [English transl: Sov. Phys. Dokl. 4, 506 (1959)

H. Kobe,

Ann. Phys. 19, 448 (1962) treated the problem for zero temperature.
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or finally

G@B, j, ') = lim | dhg(8, N\, NV'(,N). (4.7
-

Ai=0

e—+04
Formula (4.7) gives a very concise and simple ex-
pression for G(B, j, ') in terms of all V(j, »). The
kernel of the integral representation ¢,(8, A, X) is
only symmetrically dependent on the components
of X and X due to the summation over the n con-
tributions from the eyclic invariance of the trace.
V’(j, X) is the antisymmetric sum over those per-
mutations of the original spectral function V(j, \)
where only the last (n — 1) arguments are permuted.

CONCLUSION

Correlation funetions (SIEEV) and, in particular
Green’s functions figure prominently in contem-
porary treatments of the many-body problem. For
zero-temperature systems the latter occur naturally
in the perturbation theory & la Dyson-Feynman."
A variant of this technique based on introducing the
temperature (imaginary time) dependence in the
“interaction picture” of the Bloch equation through

aB) = ac™™, BER,, aC UM (4.8)

has been proposed by Matsubura.'* The underlying
idea of this scheme is to solve the resulting equations
for the purely temperature-dependent quantities and
to obtain information about these quantities for
physical values of the arguments via analytic con-
tinuation in the temperature variables justified and
guided by the spectral representations.

As pointed out in the introduction Eq. (4.8) is
incompatible with our point of view of characterizing
the relationship between the Bloch and Heisenberg
equations for the same H in terms of the holomorphic
half-plane semigroup generated by H. It is clear
that Eq. (4.8) is harmless for bounded self-adjoint
H (in which case the semigroup can be extended to
an entire analytical group) but that ¢ and there-
fore a(B) is unbounded if H is unbounded. As a

131, Pines, The Many Body Problem (W. A. Benjamin,
Inc., New York, 1961); and the lucid exposition in P. Noziéres,
Le probléme @ N corps (Dunod Cie., Paris, 1963).

4 The H in (4.8) is the unperturbed Hamiltonian. The
basic reference and some more detailed and recent accounts
of the method are T. Matsubara, Progr. Theoret. Phys.
(Kyoto) 14, 351 (1955); L. P. Kadanoff and G. Baym,
Quantum Statistical Mechanics, (W. A. Benjamin, Ine.,, New
York, 1962), see 1-2 and Appendix, who start from the
work by P. C. Martin and J. Schwinger, Phys. Rev. 115,
1342 (1959); A. A. Abrikosov, L. P. Gor'’kov, and 1. E.
Dzyaloshinski, Methods of Quantum Field Theory in Statistical
Physics, translated by R. Silverman (Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1963) Ch. I11; C. De Dominicis
and P. C. Martin, J. Math. Phys. 5, 14, 31 (1964).
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consequence the semigroup property is lost in gen-
eral, since for example e ®.¢"" = ¢ P77 if
B > B > 0 because the left-hand side is an un-
bounded operator while the right-hand side is not.
Furthermore if one wishes to work meaningfully
with SEV’s depending on the temperature through
Eq. (4.8) one is forced to adopt a modified definition
of the trace. On the one hand, one has to extend the
trace concept of the previous sections so as to have
it also defined for a certain class of unbounded
operators. This is achieved by means of the de-
finition in terms of the sum of diagonal matrix-ele-
ments with respect to a suitable complete orthonor-
mal basis in 3¢. Then on the other hand, since for a
given unbounded (densely defined) linear operator
on 3¢ there always exist normalized vectors not in
the domain of the operator (there exist even com-
plete orthonormal basis systems none of whose ele-
ments is in the domain of the operator) it is clear
that the trace definition has to be restricted to such
basis systems for which all elements are in the
domain of the operator. This means in particular
that Tr (UAU™") = Tr A does not hold in general
(in a fixed basis system) for all unitary U but only
for those U which do not violate the above condition.
Similar limitations apply to the cyclic invariance of
the trace of products of operators when evaluated
in a fixed basis system. It follows that the SEV’s
defined with the more restricted trace [of the trace
class in B(3C)] cannot be rendered meaningful out-
side of the tube J,. In particular the values of the
time-temperature variables reached by Iq. (4.8)
cannot be connected by analytic continuation with
the physical values on the boundary of 3,.

We note that the “thermodynamic perturbation
theory” discussed above is not unique in the sense
that there are methods within the framework of
the perturbation theory of semigroups which are
properly applied here. However, the results for
general semigroups are not specific enough to be of
much use in this connection.’® The very special
nature of the semigroup involved here, expressed
partly by relation (2.3)

U(z) - j;m en’zi\ dEn(A) = e“”, 2 e C+,

implies, of course, that the perturbation theory of
U(z) is intimately related to that of the infinitesimal

15 Thus the perturbation theory of Phillips gives an ex-
plicit expression for the perturbed semigroup in terms of an
infinite sum of integrals, but the perturbed operator is only
allowed to vary in a rather restricted class of operators. This
is discussed in (HP) chapter XIIT and E. Nelson, ‘‘Operator
Differential Equations,” lecture notes, Princeton University,
1964-65.
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generator. The latter problem is well studied, though
subtle in mathematical details, and can (under suit-
able conditions on the operators) be solved by a
perturbation algorithm.
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APPENDIX

I is the ring of integers, I, the strictly positive
subset, I, = {0} U I,, I, = (1,2, --- , n} for
n & I,and I, = I, — {1}. Similarly R is the field
of reals, R, the strictly positive subset, R, its closure.
C is the field of complex numbers, C, the (strict)
upper half-plane with closure C.,.

3¢ is a separable complex Hilbert space with
elements ¢, x, and inner product (¢, x). B(3e) is
the algebra of all bounded linear operators from
3¢ to 3¢, normed with the operator norm ||a||, unit
element 1. For a linear operator 4, R(\; A) = (A1 —
A)™" is the resolvent, p(A) the resolvent set, o(A4)
the spectrum.

The set of all operators W & B(3¢) for which the
(basis independent) sum Tr W = > e, (¢;, We;),
with {¢; | 7 € I,} a complete orthonormal base in
#¢, is finite and then absolutely convergent forms
the two-sided *-ideal @, of trace class operators in
B(3¢)." Every W & @, is compact and @, is a
Banach *-algebra when normed with the symmetric
trace norm |W|, = Tr [(W*W)}), which majorizes
the trace and the operator norm and satisfies l[aW|, <
llall. [W|, for a € B(3c), W € e,.

For any fixed n & I, n-tuples of objects will be
denoted as [t, --- t,] = [t]. = [f] = t if there is no
risk of confusion with the components. Given a
(], the associated (n — 1)-tuple [t, - -- t,] will be
[{]; or #'. Let v, be the symmetric group of degree
n. Then = & v, can be characterized by

_-[]_ n] [al...au]

T = = ’

a, o oa, 1 -+ n
G!,-EIM jEInJ Uai = I!l!

FEIx

¥ N. Dunford and J. T. Schwartz, Linear Operalors
(Interscience Publishers, Inc., New York, 1963), Sec. XI1.9;
C. E. Rickart, General Theory of Banach Algebras, (D. van
gostiain‘f Company, Inc., Princeton, New Jersey, 1960),
ec. Al.4.
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the action of = on the n-tuples is defined by

(W—l[t])r' = tqn je Inr

while for functions of n-tuples of arguments f([¢], [s])
(for example)

@A, [s]) = fG" (2], = '[s])-

The n-cycles of v, can be generated as powers
Yk € I, where 7, = (2 "' and every
™ € ¥, has a unique decomposition as 7 = #’- 75",

k & I, such that = is of the form

[1 2 .en ] .

1 Ba s 5n

The set of all such #’ is obviously isomorphic to
Y¥.—1 and will be denoted by ..

Products of n-tuples of (noncommuting) elements
in B(3¢) are written as [[7=;. a;, a, € B(3¢), where
the arrow indicates the ordering of the factors a;
as j ascends in [,. Functions of several complex
variables: In notation we follow the book by Vladi-
mirov.'” A set € C R" is a cone (with vertex at 0) if
s & C— s & €for A & R.. The projection pr(€) of @
istheset {s|s & cand |s] = 1}. @ is a compact sub-
cone of € if pr(e’) C pr(€). €* is the conjugate of €
defined as €¢* = {s | s-s' > 0 for all & & ¢€}. Any
e* is closed and convex. The function we(s) =
SUP,-epr(ey(—S-8") is the indicairiz of e. If h(e)
is the convex hull of @, the convexity index pe is the
number

' =

.eiHI—Je- [kacer(8)/ne(s)],

which equals 1 for convex cones. A subset 3° of
C" is a tube with base @, if € is a connected open cone
in R* and 3® = R" + ie. Given a tube 3%, p > 1,
a € R, one defines a class H,(a; ©) of functions
f(z) by
f(z) € H,(a; ©)

if

(i) f(2) holomorphic in 3°,

(ii) for every compact subcone €' of € there
exist a finite constant M(e"), (¢ € R., B € R.)
independent of €/, such that for z & 3¢

@] < M(E)A + D+ [s=e""".
One also defines
Hya.; ) = () Hya’; ©).

17 V. 8. Vladimirov, Metody teorii funktsit mnogikh komple=
ksnykh peremennykh, (Naiika, Moscow 1964), Secs. 25, 26,
in particular p. 275, 280. The Fourier-Laplace transforms of
distributions were treated in L. Schwartz, Medd. Lunds
Univ. Mat. Semin. (Suppl.), 196 (1952).
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In particular the class H,(0; €) has the property
that if f € H,(0; €) then any derivative D“f as well
as power af’, p = 1, a € C of f is also in H,(0; €).
A function f(z) holomorphic in the tube 3° is called
the Fourier-Laplace transform of the spectral dis-
tribution g(\) € D}, if

() gNe™ € 8 for

) 1) = 5o0e™; 0 = [ ax g, 2 € 3.

SEC, z=1t+1s

Vladimirov proves the

Theorem: Let f(z) &€ H,(a,; €), a = 0, € a con-
nected cone, then its spectral distribution g(\) is
in 8 and g(\) = 0 if pe(N) > a. Conversely if
g\) € 8, g\) = 0for ue(A) > aforsomea > 0 and
cone @, then all D“f(z) of its Fourier-Laplace trans-
form {(z) belong to H,(pca; h(@)).

Furthermore, under the assumptions of the con-
verse part of the theorem it follows that f(z) has
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unique boundary values f(t)
f() = lim f(t + is)
-0, 8EC"

in 8, which are independent of the way in which
s tends to zero in €' compact in €.

Let o; = =1, 7 & I’ be a collection of signs and
denote by ¢ the (n — 1)-tuple [o3 -+ @.). If 6(t)
is the Heaviside distribution, put

ﬂ,‘-(z.') = 0';9(0',' Re z.-), '£ E I,’.
and
"Ta(z) =1 'E(?' 'ﬂw(zi) S 8?!)

as well as

1 ® 6(—t).

ieln’

7(t)

One easily evaluates that

‘3—‘[’1«(3)5 k] = 5(7\1) .-eé?- [(27”')()” = ifcﬂff)]_llu-o;-
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Rigid Motions in Einstein Spaces*
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The dyadic formulation of general relativity is used systematically to discuss rigid congruences in
Einstein space—time. For space-time of uniform curvature, the quotient space metrics of rotating
and accelerating rigid bodies are obtained. For Einstein space—time of nonuniform curvature, all
irrotational, nonisometrie, rigid motions are explicitly displayed. They have one degree of freedom,
and occur only in degenerate static metries of Class B. Rotating rigid congruences in Einstein space-
time of nonuniform eurvature are shown to have no degrees of freedom. Their evolution is in fact
found to be governed by a complete set of 14 first-order total differential equations, linear in the time
derivatives of the dyadic variables. Such rotating motions are shown further to be constrained by a set
of algebraie conditions, and the implication of this for the validity of the Herglotz—Noether theorem

in Einstein space-time is discussed.

I. INTRODUCTION

: I HE investigation of rigid motion in relativity

was initiated by the carly papers of M. Born,'
G. Herglotz,” and F. Noether.® Little further work
on the subject appeared until much later when its
possible importance for the general theory of rela-
tivity emerged, as in, for example, the remarks
of Synge." The Born constraint of vanishing rate-
of-strain may be carried over directly into general
relativity, cf. Rosen® and Salzmann and Taub.®
So defined, rigid motions in curved space-time are
of considerable interest; mathematically, for their
possible use in the invariant geometric analysis
of the structure and global properties of Riemannian
manifolds, analogous to that based on the more
restricted isometries; and physically, for attaining
a better understanding of the imprecise concept
of rigidity so often implicitly involved in the inter-
pretation of relativistic experiments, e.g., the
Pound-Rebka red-shift experiment.

In 1959 C. B. Rayner’ showed that the proper
energy density and the magnitude of the angular
velocity of a rigid body must be constant in time.
Recently F. A. B. Pirani and G. Williams® have
included this latter in a set of six relations between
the time behavior of the angular velocity vector
of the body and certain components of the space-
time curvature, relations which follow from time

* This work was sponsored by the National Aeronautics
and Space Administration under Contract No. NAS7-100.

! M. Born, Ann. Physik 30, 1 (1909).

2 G. Herglotz, Ann. Physik 31, 393 (1910).

3 F. Noether, Ann. Physik. 31, 919 (1910).

+J. L. Synge, Relutivity: The General Theory (North-
Holland Publishing Company, Amsterdam, 1960).

& N. Rosen, Phys. Rev. 71, 54 (1947).

6 GG. Salzman and A. H. Taub, Phys. Rev. 95, 1659 (1954).

7 C. B. Rayner, Compt. Rend. 248, 929 (1959a).

_*F. A. E. Pirani and G. Williams, Séminaire JANET,
Siéme année, 1961/2, No. 8-9.

constancy of the orthogonal metric of the rigid body.
R. H. Boyer” has carefully discussed the entire
problem and has extended this work to obtain
sufficient, but not necessary, conditions for the
validity of the Herglotz—Noether theorem in curved
manifolds,

In the present paper we obtain some new results
for test rigid motions in Einstein space, using the
dyadic formalism for general relativity presented
in what we will refer to as Paper L'” The basic
dyadic equations for this problem are given in
Sec. II.

In Sce. ITI, partly as an illustration of dyadic
techniques, we prove the Herglotz—Noether theorem
in space-time of uniform curvature (de Sitter space)
—a proof already far from trivial in covariant
Janguage. We derive in this space the general
quotient space (three-dimensional or inner) metrics
of rotating and accelerating test rigid bodies. ‘

In See. IV we show that nonrotating nonisometric
rigid motions can only occur in a restricted class
of Type D Einstein spaces, and that such motiqns
are allowed but one degree of freedom. The metrics
and the rigid frames are exhibited. These are the
only rigid motions having any degree of freedom
whatever in Iinstein spaces which are neither
flat nor uniformly curved.

In Sce. V we explicitly attack the I‘Iei‘g]f’tz’
Noether theorem in Binstein space. The six tme
derivative equations of Pirani and Williams are

shown to be included in a full set of fourteen, Whic!

9 R. H. Boyer, Proc. Roy. Soc. (London) A283, 343 {11%32;

1 F. Istabrook and H. Wahlquist, J. Math. Phys: ! versl
(1964). Referred to as Paper I. For expositions © gen as
special techniques of caleulation in the dyadic notatio™ Lo
well as an extended discussion of the rigidity P“’"'%’-ig&.
H. D. Wahlquist and F. B. Estabrook, Report NO'I ologh
Jet Propulsion Laboratory, Culifornia Institute of Te¢ A
Pasadena, California (1966).
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may be in principle solved for the local time-rate-
of-change of the fourteen dyadic components in-
volved, subject to a set of subsidiary algebraic
conditions. A rigid frame can rotate only in the
unlikely event that the subsidiary conditions are
all fulfilled throughout the motion; the equations
then determine the complete evolution of the motion
and the metric from any initial 3-space. It remains
to show that the subsidiary conditions can be
satisfied only by isometries, if the Herglotz—Noether
theorem is to be stated for general Einstein spaces
in the usual simple fashion.

II. THE DYADIC EQUATIONS FOR RIGID
REFERENCE FRAMES IN EINSTEIN SPACE

The dyadic formalism results from the intro-
duction of an orthonormal tetrad of basis vectors,
one timelike and three spacelike, at each event in
space-time. The timelike tetrad vector u’ is every-
where aligned with a given timelike congruence
and so coincides with the unit tangent to the
congruence, If the world lines of the congruence
represent the history of a material medium, u® will
be the 4-velocity field of the matter. The spacelike
triad u” [or u, v, w] then provides a locally co-
moving frame of reference and spans the local 3-space
orthogonal to the given congruence at each event.
A formal partitioning of the space-time manifold
is thus achieved, and, by projecting all tensor fields
of interest into these orthogonal 3-spaces, we arrive
at the 3-dimensional vector and dyadic formalism.
A complete discussion of this approach and the
dyadic notation is contained in Paper I.

It has the advantage that the field quantities
are always explicitly displayed as arrays of physically
interpretable components; further, as will appear in
the present paper, it allows the choice of intrinsic
reference vectors [as well as the use of intrinsic
(holonomic) coordinates] in analyzing the algebraic
aspects of relativistic problems before infegration
of their partial differential equations.

A general {imelike congruence may be described
at each point by its absolute acceleration vector a,
angular velocity vector , and symmetric rate-of-
strain dyadic S. Following Born, the rigid con-
gruence is defined by S = 0, so that both the shear
and expansion vanish. In space-time this is equiv-
alent to constraining the world lines of the timelike
congruence to have constant orthogonal separations.
As a geometrical consequence of this constraint,
the orthogonal 3-space metric on a rigid body in
co-moving coordinates is constant throughout time,
(has)" = 0. By adopting orthonormal basis triads
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which co-rotate with the rigid body [0 = Q, cf.
Bqs. (C42), (D25), and (D26) of Paper I] and are
thus fixed in it, we ensure that the anholonomic
affinity of the orthogonal 3-space is time-inde-
pendent: N = 0. [In Paper 1 the dyadic affinity
was denoted by N*, the bare symbol N representing
only its symmetric part (up to a trace). This notation
has proved slightly clumsy, and in the present
paper N replaces the N* of Paper I.] In this situation
it is permissible to replace the many local orthogonal
3-spaces with the concept of a single metric “ quotient
space”’—the 3-dimensional manifold of co-moving
coordinates, x*. Geometrically, we may picture the
quotient space as a reduction of space-time obtained
when all events lying on each world line of the
timelike congruence are identified. The orthogonal
metric h,; and the affinity N are then applied to
this quotient space.

The curvature equation for this 3-dimensional
metrie space becomes

(1)

The symmetric dyadic E is the conservative dyadic
of the quotient space, satisfying the Bianchi identity

)

Its diagonal elements are the Riemannian curvatures
of the quotient space, based on the orthonormal
triad vectors, while all six components are sufficient
to express the complete 3-space curvature tensor.
Since N = 0, we can apply the commutation relation,
Eq. (4), to Eq. (1) to show that

V xN = —IN" XN+ E.

V-E=0.

©)

independently of the coordinate system employed.
In co-moving coordinates this is, of course, seen as
a trivial consequence of (h.z)" = 0.

The commutation rules for covariant and time
differentiation in the quotient space are somewhat
unfamiliar in general as a result of the use of anholo-
nomic reference systems. And although the geometry
of the quotient space is constant in time, we may
have time-dependent objects in the space and for
these the order of space and time differentiation
is of consequence. Letting ¢, V, and M symbolize,
respectively, an arbitrary scalar, vector, and dyadic,
we have

E=0,

(V‘!’). = V(‘p) = a\[’!
(VV) — V(V) = aV,
(VxM) — V x(M) = axM.

(4)
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Note that for any time-independent quantity these
operations do commute; this is a special property
of rigid congruences.

Commutation of the 3-dimensional covariant dif-
ferentiation operator ¥ with itself is also somewhat
unusual, except when the angular velocity Q of the
rigid body vanishes. (In this latter case the 4-velocity
of the body is derivable from a scalar potential and
its world lines are the orthogonal trajectories of
a family of hypersurfaces in space-time. Conse-
quently, the quotient space becomes isometric to all
the members of a family of immersed Riemannian
3-spaces, which could be parametrized by (.) Samples
of the space-space commutation relations are

V xVy = 2¢4Q,
V(Y xV) = 2Q-V,
¥V x(VV) = —ExV + 2qV.

We impose the condition for Einstein space-time
in_the form

G..=R,, (6)

where A = —1R is the cosmological constant. In
orthonormal components this equation leads to the
following expressions for the contracted curvature
quantities of Eq. (D11) of Paper I:

©)

e %Rgu- 1= Aguu

T = 1Al @
t=0, (8)
p = 3A. (9)

Ten of the twenty curvature components are speci-
fied by these equations. The remaining ten, com-
prised in the Weyl tensor, are represented in two
symmetric, traceless, dyadies A and B which remain
arbitrary. The curvature of the quotient space is
related to the space-time curvature by a generalized
Gauss equation,

E= (10)

This equation, together with Eq. (3), has important
consequences for allowed rigid motions, which will
be discussed fully in later sections.

As a vector field in the quotient space, the accel-
eration of the rigid body satisfies the dyadic equation

—A + 3Al — 30Q.

Va=—aa+QQ—Qx14+A— (04 AL (1)
The trace of this equation reads
Vea = —g* — 20" — A, (12)
and its antisymmetric part is
V xa = 24, (13)

AND F.
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This last equation is one integrability condition for
introduction of a scalar potential ¢ and a vector
potential A:

¢a = —Vo + A. (14)

The corresponding set of equations for the angular
velocity or vorticity field becomes

VQ = —2aQ + (a-Q)| + B, (15)
V-Q=aQ, (16)
V xQ = 2Q xa, (17)

with the vector potential equation
26Q = 7 xA. (18)

The scalar and 3-vector potentials, ¢ and A,
introduced in Eqgs. (14) and (18) can be related to
the expression of the space-time interval in a co-
moving system of coordinates (z°, 1),

ds® = —(1/¢") d® + (2/¢MA. dz™ dt
4 [hnﬂ - (1/¢7)A¢AB] dz” dx’p

where A, = A.e, and h,; is the metric of the
3-dimensional quotient space defined in terms of
natural basis vectors e, by h,; = e,-e; with
e.-e’ = 5 and e” = V2", The existence of sets
of these potentials for the inertial fields a and Q is
in fact guaranteed by the general availability of
co-moving coordinates; cf., e.g., Lichnerowicz."* For
any such system a set results, defined and interpreted
as absolute derivatives of the ¢ coordinate, respec-
tively, along and orthogonal to the ¢ congruences:

- 8L

¢_dr' =

where 7 is proper time along a line of the ¢ congruence.
The gravitational field equations, or Bianchi
identities, have the Maxwellian-like dyadic forms

V xA — B = —axA 4+ Axa — QxB — 2B xQ,

(19)

—axB 4+ Bxa 4+ QxA 4 2A xQ.
(20)

The antisymmetric parts of these two equations
are the vector equations

VA=
VIB =

Finally, since we have specialized to Einstein space,

VxB+ A=

—3Q-8B, (21)

30Q-A. (22)

u .:\. Liclmeru\\_'icz, Théories Relutivistes de la Gravitation et
de ' Electroagnétmisme (Masson et Cie., Paris, 1955).
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the contracted Bianchi identities are trivial. They
merely insist on the constancy of the cosmological
constant;

A=VA 0.

ITI. RIGID MOTION IN SPACE-TIMES OF
CONSTANT CURVATURE

We first quickly prove the Herglotz—Noether
theorem proper, which states that rigid motions,
when there is rotation, are necessarily isometries
of the manifold. The only original contribution here
is a derivation of the quotient space metries intrinsic
to a rotating and accelerating rigid body in the
space-time of constant curvature.

Setting the conformal curvature dyadics A and B
to zero, we obtain the equations appropriate to a
space-time of constant curvature, X = }A. Com-
bining Eqgs. (3) and (10) we find that

Q=0

(23)

(24)

Since our equations are written in body-fixed axes,
this result shows immediately that the angular
velocity is a fixed vector in the body; however,
since £ + @ x Q also vanishes (o0 = ), the angular
velocity vector is fixed in Fermi propagated axes
as well. We note also that Eq. (13) now reads
simply, ¥ xa = 0.

Using the fact that space and time derivatives
of @ will commute, it follows from time differ-
entiating Eq. (16) that (a-Q)" = 0. Then treating
Eq. (15) similarly one gets the dyadic equation

aq = 0. (25)

Thus, if the angular velocity does not vanish, we
must have & = 0 so that the acceleration vector
is body-fixed also. The two equations now satisfied
by a when @ # 0, viz., V xa = 4 = 0, together with
the constraint of rigidity S = 0, are the necessary
and sufficient conditions for an isometric or Killing
vector congruence. Thus the Ierglotz—Noether
theorem applies to all space-times of constant
curvature. The full ten parameter group of isometries
exists for these spaces and is well known; Herglotz®
in particular has given a detailed treatment of the
timelike isometries in flat space-time.

The curvature of the spatial geometry in a rotating
rigid body depends on the angular velocity, as
shown by the Gauss equation (10) for the 3-space
curvature dyadic E,

E

—3Q0 + AL (26)

The secalar curvature of the space is given by —2 Tr E
and so has the value —2(A — 3%°). The metric of
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the quotient 3-space on a rotating rigid disk has
been a subject of occasional interest in the literature
of relativity; several references to early discussions
are given by Berenda." In constant curvature space-
time, the most general rotating and accelerating
rigid body is a typical example of a situation pro-
viding its own intrinsic comoving coordinates, and
the quotient metrics are easily obtained with this
approach.

For the rotating body, three intrinsic scalars may
exist; a’, @°, and a-Q, all of which must be time
independent as we have shown, so that co-moving
coordinates may be constructed from them. The
gradients of these scalars are obtained directly
from Eqs. (11) and (15) and can be combined to
express the following vectors:

a=—3}Vin[a®— @ + 3A)

= —{V In[(a-Q)" + }AQ%], (27)

Q = [27/2(a-Q)]V In [2%/(a® — 2° + }A)?], (28)
a, =a— [(a-Q)/2']Q

=1V In[(@® — @ + }A)*/(2)*]. (29)

Comparison of the gradients further results in the
integral

(a-@)" + 3AQ" = K'(a® — 2 + 14)’,  (30)

revealing that the three scalars are not independent
so that only two intrinsic coordinates can actually be
constructed. Since space-times of negative constant
curvature have very peculiar physical properties,
we shall here consider A > 0 only. By the form of
(30) the integration constant is then required to be
positive, so is written k*, and we take k > 0.

It is clear that two especially convenient intrinsic
coordinates are obtained by taking one of them
to be some function of the argument of the logarithm
in Eq. (28) and the other a function of the argument
in Eq. (29). For then the gradient vectors of such
coordinates will be orthogonal, leading to a diagonal
metric. We select the functions by keeping in mind
the flat space-time example of the rigid disk rotating
about a fixed axis, and requiring the general metric to
reduce in that limit to a familiar form in cylindrical
co-moving coordinates.

This is accomplished for the argument in Eq. (28)
by setting

/(@ — ° + §A)* = (K/a’) sin® [a(1/wk — 2)],
(31)
where a = (%A)’, wp 1S a new constant, and z is
2 C. W. Berenda, Phys. Rev. 62, 280 (1942).
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introduced as the coordinate whose surfaces have
Q as normal vector, The other coordinate r is intro-
duced by putting

(a* — @+ 30)/9° = —(1/2k*)[—1 + B cos (2kaw,r)],

(32)
where 8 = (1 + 4k%)}, and a, is thus orthogonal to
the coordinate surfaces r = constant. Now solving
Egs. (30), (31), and (32) simultaneously we express
the intrinsic scalars for the general case in terms of
these intrinsic coordinates;

a = a} + (a-Q)°*/ 2,

ai = o’8°R™*sin® (2ku,r) csc’ Z,

(33)
9 = 4a’*R7? esc’ Z,
(a-Q)* = 4a'k’R™* csc® Z cot® Z,
where
R = —1+4 8 cos (2kwyr),
Z = a(l/wk — 2).

Differentiating (31) and (32), substituting in Eqs.
(28) and (29), and using the expressions in Eq. (33),
we find

Q = |o] vz, (34)
showing ¥z as a unit vector, and
a, = — Ia.l.1 (k"’o/ﬂ!) sin Z Vr. (35)

A third intrinsic coordinate does not exist; how-
ever, applying the dyadic Eqs. (11) and (15) for
Va and VQ, we easily prove that

(axQ)-[V x(axQ)] =0,

so that a scalar potential also exists for this vector
which is orthogonal to both € and a,. Letting the
potential be denoted by 8, we can show that a
consistent choice is

axQ = |a,| |Q] (8/w)[sin (2kwi)/(2 [R])]
X (kwo/e) sin Z V6. (36)

The gradients of the coordinates constitute the
natural basis vector triad e, so putting

e' = Vr, e’ = Ve, e’ = Vz,

we use Eqs. (34), (35), and (36) to determine the
dual set as

— (kwo/e) sin Z(al/laxl):
e, = (kwy/a) sin Z(B/wo)[sin (2kwer)/(2 |R])}]
X (axQ/|axQl),

e, =

€; = Q/iﬂll
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satisfying the inversion e“-e; = 8% Using h.; =
e,-e; the general quotient space metric for a rota-
ting, accelerating, rigid body in constant curvature
space—time becomes

dl* = (kwo/a)’ sin® Z
X {d? + (B/w)sin® (hkour)/2 |R]] d6°) + do*. (37)

Limits are required on the ranges of both z and »
coordinates; for 2
0<Z =a(l/wk —2) <m, (38)
and for r
0 < 2koyr <, (39)

but this latter range is subdivided by the vanishing
of the quantity R in the denominator at

cos (2kw,r) = 7.

Since the intrinsic scalars become infinite at this
point, it is best to give two different metrics for
each range.

The first becomes

I. 0 <1 < (1/2kas) cos™ (1/8),

2 I"woz . 2
dli* = : sin” 2

<o+ ()

Letting A — 0 we find for flat space-time

sin® (2kw,r)
2[8 cos (2kwyr) — 1

] 492} +dZ. (40)

di* = (1 — wka)’

2 LAY sin’ (2kw,r) : 3
X {d’ + (wo) 518 cos Rhkwg) — 1] %0 } +de

(A = 0).

(41)

And if we further let & vanish so that a-Q = 0,
we get

di = &* + [*/(1 — wi®)] d6® +d2* (A=k=0),

(42)

which is the quotient metric on a fixed axis rotating
rigid disk in the form obtained by Berenda."”
Compare also the discussion by Mgller."

To write the metric for the second allowed range,
it is desirable to introduce a new coordinate 7
according to

2kwy = 1 — 2kwyr,

13 C, Mgller, The Theory of Relativity (Oxford University
Press, London, 1952), Chap. VIIIL.



RIGID MOTIONS IN

so that
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F < (1/2kwy) cos™' (—=1/8),

. B\ sin® (2kw,F)
X {d” + (J) 38 cos (kwof) + 1
The limiting case A = & 0 is of little interest
here, since it can be shown from Eq. (33) that it
corresponds to vanishing angular velocity in flat
space—time, and consequently a flat quotient space
results.

IV. IRROTATIONAL RIGID FRAMES

]dBQ} + d2*. (43)

The class of irrotational rigid motions proves to
be the most interesting for arbitrary exterior gravi-
tational fields. Although we have not quite been
able to carry through a complete proof of the
Herglotz—Noether theorem, it will be shown in See. V
that the motion of the rotating rigid frame in any
exterior field is totally determined by initial con-
ditions on a spacelike hypersurface. Only among
the irrotational frames can we find any motions
allowing arbitrary functions of time, or in other
words, degrees of freedom. We shall concentrate
here on finding all such nonisometric normal rigid
motions which may exist in an arbitrary Einstein
space. The variety of exterior metries admitting
such motions will also be obtained; they turn out
to be quite special, falling into a well-known class
of Einstein spaces.

The equations for these motions are, of course,
obtained by putting 0 throughout Sec. II.
We note first of all that the potential equation (18)
for © becomes ¥V xA 0, and accordingly we
may select a gauge such that A = 0. This simply
corresponds to the possibility of using a time coordi-
nate whose surfaces coincide with the normal hyper-
surfaces of the congruence. Next we find that
Eq. (15) reduces to B 0, and the gravitational
field is thus deseribed by A alone. Here we insist
that A # 0, since the manifold would otherwise
reduce to a space—time of constant curvature. This
structure of the field dyadics can only be obtained
in Type I and D Einstein spaces in the Petrov-
Pirani-Sachs classification scheme, as pointed out
previously by Pirani and Williams.®

Since we are not presently interested in isometric
motions, we assume henceforth that 4 = 0, and
attempt to construct solutions obeying this con-
straint. Now the algebraic properties of the dyadic
A are examined. Using the fact that A = 0 [Eq. (20)],
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we time-differentiate the Bianchi identity Eq. (19)
and find

(V xA)

—axA+ Axa =0, (49

so that the symmetric part of the dyadic axA
vanishes, From this equation and Tr A = 0, it
can be shown that a is an eigenvector of A and that
we may solve for A as

A = o’[3(ad/d?) — 1], (45)

where 2o” is the cigenvalue. It will be convenient
to define a unit vector, u = a/|al, and so to write
Eq. (45) as

A = o’[3uu — 1. (46)

It is easily verified that A : A = 6a°, and the time
derivative of this shows & = 0. Now time differen-
tiating Eq. (46) and using the fact that u is a unit
vector, we find @ = 0 so that u is a body-fixed unit
vector.

The vector u will be adopted as one of the intrinsic
triad basis vectors; we now find two more to complete
the triad. Let a, be the component of the acceleration
perpendicular to &, so that

a, =a — (a-uu.

We may verify that this is a time-independent,
body-fixed vector and so can use it to define a
second intrinsic triad vector v by writing

a, = la,|v = (av)y, (47)

where

uv=20, v=0 (a-v)=0. (48)

The third triad vector w is defined simply by
w = uxv, and, of course, a-w = a-w = 0. This
construction will fail if a and a are collinear, but
for now we assume this is not the case. We shall
return to consider the collinear case later; it is
fairly easily obtained as a limit of the more general
solution.

Having adopted a basis triad, we proceed to
investigate its differential properties. From its defi-
nition we may write

Vu = V(a/a) = (1/[ap[V (@) — (V [a])u].

The right-hand side of this equation is evaluated by
combining the commutation relation Eq. (4) and
the time derivative of Eq. (11). We have

YVu

(49)

—ula — (a-u)u] = —ua, = —(a-viuv, (50)
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and the corollaries

V xu = (Vu)xl = —(a-v)w, (51)
Vau=(Vu:1=0.
In like manner we evaluate Vv = V(a,/|a,|).
The result is
Vv = (@-vjuu — [ + 34)/@-v)ww,  (52)

and

Vxv=0 V-.v=/[1/(aV)][(av)" —a" — 3Al
(53)
Finally, for Vw, we have
Vw = [(o" + }A)/(a-V)]wv, (54)
with
V xw = —[(@® + }A)/(a-V)ju, V-w=0. (55

The geometrical content of these equations may
be summarized by tlie statements that v is a 2-space
normal, geodesic vector of the quotient space,
while u and w are 2-space normal, Killing vectors
of the quotient space.

We are now prepared to calculate the gradients
of all the independent intrinsic scalars which can
be formed; viz., ¢, a-u, a-v, and «. All other scalars
are algebraic functions or derivatives of these. The
potential equation (14) gives V¢ directly,

V¢ = —¢[(a-u)u + (a-v)v]. (56)
The next two are evaluated as
V(a-u) = Va-u 4+ Vu-a 7)
= —(a® — 2a° + 3A)u — (a-u)(a-v)v,
and similarly
V(@-v) = —[(a-v)* + o® + 3Alv. (58)

The gradient of « is most easily derived by substi-
tuting the explicit form for A given in Eq. (46)
into the field equation (21) to obtain

(59)

Comparison of Egs. (58) and (59) now reveals
that an integral exists, and using these equations
it is found that

Vil@v)" — 22" + 3A)/a*} = 0. (60)

Integrating and solving for (a-v)’, this may be
written as

Va = —afa-v)v.

(a-v)* = k'’ + 2a° — 1A, (61)

where we use an indicator e = =1 to account for
sign and may restrict the integration constant k
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so that & > 0. We have, of course, Vk = 0, but
since all other quantities in Eq. (61) have already
been shown to be time-independent, it follows
that k = 0 as well.

It is not quite so obvious that the set of Egs.
(56)~(59) leads also to another integral. Using them
together with the integral (61) we may verify,
however, that

Vil(a-w)?* + ek’a’]/¢*] = 0,
and so obtain
(a-u)® + ek’a® = €'(k")°¢°,
where ¢ is another sign indicator, ¢ = =1, and
k' > 0 with V& = 0. Here k' might be a function of
time. Since it enters only as a factor of the potential

¢, however, it may be absorbed in the potential
itsell. The integral now becomes simply

(a-u)® = ¢'¢* — ek’a’. (62)

We note that this equation forbids the combination:
¢ = —1, ¢ = 1; all other combinations are in
general allowed. Adding Eqs. (61) and (62) we
obtain the square of the acceleration vector

a* = ¢’ + 2° — 3A. (63)

Physically reasonable space-times are usually asso-
ciated with A > 0, and, for these cases, we see from
Egs. (61) and (63) that if « is negative, the only
allowed combination of signs is ¢ = ¢ = 1.

At this point all the essential intrinsic relations
have been derived; it remains only to adopt a
system of co-moving coordinates, and obtain the
corresponding metrics of the quotient space and of
space-time. As mentioned before, all three of the
adopted triad vectors fortunately turn out to be
2-space normal. We may consequently expect to
be able to introduce an orthogonal coordinate
system in the quotient space.

Two of the intrinsic scalars, a-v and «, offer
themselves as candidates for intrinsic co-moving
coordinates, since we have verified that they are
time independent. Actually, since these are related
by Eq. (61), only one independent intrinsic coordi-
nate is available. Any function of @ and a-v might
be selected, but a convenient choice proves to be
— (ka)™". According to Eq. (59) the triad vector v
is normal to the 2-spaces @ = constant, so we adopt
the symbol y for this coordinate and solve for the
scalars in terms of it:

(64)
(65)

“_l/ky)
(a-v)" = (¢/y") — [2/(ky)’] — A

o =
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Diﬂerentiating Eq. (64) we have
Ve = (1/ky")Vy,
g0 that Eq. (59) may be transformed to

e’ = Vy = y(a-vy, (66)

where we have introduced the natural basis vector e®.

Intrinsic co-moving potentials for the other triad
yectors are not available; this is connected with
the fact that u and w were found to be Killing
vectors. We know, however, that the space con-
gruences generated by u and w are each body-
fixed and 2-space-normal, and of course orthogonal
to each other. Accordingly we may introduce orthog-
onal, body-fixed (co-moving) coordinates, say x and z
respectively, by any arbitrary time-independent
labeling of the 2-surfaces normal to these con-
gruences. Introducing the natural basis vectors
e' and €® associated with a particular labeling we
can write

e' = Vz = (1/y)u, (67)
e’ = Vz = [1/y(a-v)]w. (68)

The dual natural triad is clearly
e, =yu, e, = [1/y(a-v)}v, e; = y(a-v)w, (69)

and the nonzero covariant metric coefficients of
the quotient space are consequently given by

hy = e;ve, = y’,
(1/y*(a-v)’]
= [e — (2/K%) — 3AY°T7Y,
by = €5, = y'(a-v)* = [e — (2/k"y) — 3AY).

Il

h22 = €€y (70)

Since the constant k occurs here only as k™°, we
shall henceforth write m, where m = k™° is a positive
constant. Note that the metric coefficients are inde-
pendent of z and z; this expresses the symmetry
properties we expected from the existence of two
Killing vectors, u and w.

To write the space-time metric in co-moving
coordinates as in Sec. II, we need only obtain an
explicit expression for the potential ¢, since we are
employing the gauge A = 0. To find ¢ we write
the obvious equality

y¢la — (a-u)u — (a-v)v] = 0, (71)

and insert a from Eq. (14), (a-u) from (62), u from
(67), and (a-v)v from (66). The result of all these
substitutions is

V) = @p)lee) — 'Ve = 0. (72)

SPACES 901
Consider first the case ¢ = ¢ = 1; from Eq. (62)
we find (y¢)* > 1, so that an appropriate substi-
tution is

y¢ = cosec 4,
With this substitution Eq. (72) becomes
Vi = £Vz,

and so

6 = x[z + ()], (73)

where Vf = 0, but { is allowed to be any function
of the ¢ coordinate, since, again, we have chosen
the gauge A = Vi = 0. So the space—time interval
in these co-moving coordinates has the form

L. e=¢ =1 () =1,
ds* = y*{—sin® [z + f(§)] df* + da?}
+ [1 — @m/y) — $A0°17"ay
+ [1 — 2m/y) — 3Ay7) d2°. (74)

Exactly analogous integrations of Eq. (72) for the
remaining two permitted combinations of signs
lead to

II.  e=-1, €¢=1, 0<Z @’ < =,
ds* = y*{—sinh® [z + (¢)] dE® + dz”}
+ [—=1 — @m/y) — 3Ay°]7" &Y

+ [—1 — 2m/y) — 3Ay"] d2', (75)
and
I11. e=¢ =-1, (¥’ <1,
ds’ = y*{—cosh® [z 4+ f()] dE® + d2?}

+ [—1 = @m/y) — 3Ay°)" &y

+ [—1 — (2m/y) — 3Ay°] d2°. (76)

Returning now to the special case left behind,
which was characterized precisely by a, = a-v = 0,
we see that it appears as a singular limit. After
investigating some of its properties we can obtain the
metrics for this situation. Reference to Xq. (50)
shows that in this case Vu = 0, so that u is a
covariant constant vector in the quotient space.
The integrability condition for this can be found
using Eq. (5) of Sec. 1I;

Exu = (—A + 3A) xu = (@ + §A)ux| =0,

where we have used Eqgs. (10) and (46). Thus we
require

o' = —1/(ky)’ = —3A.
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The dyadies A and E become then

A= —3AGBuu — 1),

E = Auu,

and we see that a nontrivial solution exists here
only for A # 0. Following through a direct inte-
gration of the dyadic equations leads in one case
to the space-time metric
IV. a, = 0, A 2> 0,
ds’ = (1/A)[—sin® [z + (1)) d°

+ di® + d6° + sin® 0 d¢’} . 7D

However, this last may be more simply obtained
as a singular limit at the coordinate singularity
of metric I, Eq. (74). Note that the y coordinate
becomes constant, ¥ = (3m/A)}; from Eq. (65) it
follows that for a-v = 0 we must further put
m = 3(e/A)! (requiring now ¢/A > 0),s0 y = e(e/A)}
in the limit. This suggests inserting

/M)A — 368,  y = (/N'A + 87),
z = (/A 57z,

m=

and then letting the parameter § approach zero.
The result for all three metries is

ds* = (/M) =Kz + ()] A + dz*
+ (1 — ") di’ + (1 — &) d2*},

where h is the appropriate circular or hyperbolie
function in each case. The (7, 2) 2-spaces have
constant curvature A™'. Thus, introducing polar
coordinates, we sce that metric I becomes IV, as
in Eq. (77), and II and IIT become, respectively,

V. a, =0, A <0,

ds’ = (1/—A){—sinh® [z + ()] d® + dz* + 6
+ sinh® 0 d¢’},  (78)

VI. A <O,

ds® = (1/—A)[—cosh® [z + f(1)] A + dz* + d6’
+ cosh?® 8dg*}.  (79)

a; =0,

The space-time metrics I, II, and IIT are well
known. It is easily verified that the indefinite
(xr, 1) 2-spaces in all cases have homogeneous,
constant Riemannian curvatures, =41/4°. Thus, in
the case of metric I, for instance, this 2-space could
be written in terms of new, non co-moving coordi-
nates (6, i) as

y*[—sin® 8 dF° + d6°],
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and metric I then becomes

ds’ = y*{—sin® 0 di* + d6°)
+ [1 — @m/y) —
+ [1 — @m/y) — 3Ay°) dd°. (80)

Here the 7 lines are a timelike isometry of the
manifold, and for A = 0 this is precisely the canonical
form of a degenerate static vacuum metrie of Class
B-1 in the nomenclature of Ehlers and Kundt.'*
A similar rewriting of metries II and III, bringing
them to static form, shows that II is Class B-2
while III corresponds to the class of analytically
extended metrics B-2, where the notation is again
that of Ref. (14). Summarizing then we may state
that, excluding spaces of constant curvature, the
only Finstein spaces admitting nonisometrie, irro-
tational, rigid congruences are the degenerate static
metrics of Class B; and the special singular solutions
1V, V, and VI, which require A ¢ 0. This result is
perfectly consistent with a general theorem recently
presented by M. Triimper.'®

In the co-moving coordinates, the world lines of
the rigid frame for all these metries are the lines
{-varies and, so long as f is some function of ¢, the
congruence is nonisometric. The process of direct
construction we have followed demonstrates these
to be the only nonisometrie, irrotational, rigid con-
gruences in Einstein spaces with nonvanishing Weyl
tensor. In every case only one arbitrary function
of time remains to be specified; in other words,
irrotational rigid frames in exterior gravitational
fields have no more than one degree of freedom.
Anticipating the results of See. V, where it is shown
that rotating rigid congruences allow no arbitrary
time funections, we can actually generalize the pre-
ceding sentence by deleting the word “irrotational.”

The relation between the co-moving coordinates
of Eq. (74) and the static coordinates of Eq. (80)
is interesting for its conneection with the geometrie
construction for irrotational rigid motions in uni-
formly curved or flat space-time (as discussed in
Refs. 9 and 16). Consider a 2-space of constant,
unit eurvature (but of hyperbolic metric, for the
present cases). We could use polar coordinates 6, I in
this 2-space, so that the metric would take the
nonmaximal but simple form

dl’ = —sin® 6 di* + dé°.

A dy

(81

14 J, Ehlers and W. Kundt in Gravitation: an introduction
to current research, edited by L. Witten (John Wiley & Sons,
Ine., New York, 1962), Chap. 2.

8 M. Triimper, J, Math, Phys. 6, 584 (1965).

15 A, D. Fokker, Rev. Mod. Phys. 21, 406 (1949).
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If we are given a spacelike curve € in this space,
we may however prefer to introduce orthogonal
coordinates 8, ¢ based on € by the construction
on the convex side of € shown in the figure. Tangent
geodesics from @ are taken as the lines { = constant.
Orthogonal to them are the involutes of €, the lines
§ = const.; the value of @ labeling one of these is
the proper distance to it along € from an origin 0
on €. If the distance along € from 0 to the point
of tangency of a curve { = const is f(t), it follows
by inspection that the form for interval ds® at any
point P is being expressed in terms of “moving
polar coordinates’” based on a pole that migrates
along € (see Fig. 1):

ds' = —sin® [0 — (0] dC + dF*. (82

In these coordinates, the equation for € itself is
just @ — f({) = 0. The congruence of involutes is
clearly rigid, equidistant.,

In Eq. (74) we have this construction if we
identify @ with —z. The curves € in the z, ¢ pseudo-
spherical subspaces form a spacelike 3-surface in
space—time. All points in the rigid body achieve
infinite acceleration on this 3-surface.

V. ROTATING RIGID FRAMES

We now inquire whether any nonisometric rotating
rigid motions exist; and if so, the maximum number
of degrees of freedom allowed, and the form of
any constraints imposed on the time dependence of
the acceleration, angular velocity or other variables,

Partial answers to some of these questions have
been given in recent years.” " Pirani and Williams®
show how to construct (by means of a certain
metrie transformation) examples of space-time
metrics admitting nonisometric rotating rigid con-
gruences. Thus they have demonstrated that the
Herglotz—Noether theorem is nol always valid.
Unfortunately, their discussion does not reveal
explicitly the form of the Ricei tensor of the mani-
folds obtained, and it is apparently not at all clear
whether the associated Einstein or stress tensor
is physically reasonable. In particular, it seems not
to be known whether any of their metries include

Fra. 1. Moving polar coordinates based on a curve €.
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empty or Einstein spaces, nor whether the tangent
vector of the rigid congruence is the timelike
eigenvector of the stress tensor.

For the case of rotating rigid frames in Einstein
space, we have obtained a complete set of differential
equations of first order in the local time derivatives,
which govern the evolution of these motions. Thus
we can state that in general Einstein space the
entire history of rotating rigid motions is determined
by initial conditions on any one spatial hyper-
surface, so that no arbitrary functions of time
(degrees of freedom) are permitted. In a sense this
incorporates much of the physical significance of the
Herglotz—Noether theorem. Actually, as we shall
sec, the fotal set of equations is over-complete,
since four subsidiary algebraic equations are obtained
in addition to the differential equations, Isometric
motions, for which all quantities are time inde-
pendent, constitute a trivial solution of the total
set; it may be that these are the only solutions
consistent with the subsidiary equations, in which
case the usual statement of the Herglotz-Noether
theorem would hold. Unfortunately, the algebraic
complexify of the equations has so far prohibited
either reducing them to the conditions for isometries,
or, conversely, demonstrating one or more particular
nonisometric solutions,

The derivation of the equations depends crucially
on the commutation of the space- and time-deriv-
ative operators for time-independent quantities
[Eq. (4)], which as remarked in Sec. 11 is a special
property of rigid motions. We start again with the
Gauss equation (10) for rigid motion in Einstein
space

E= —A — 300 + 1Al
and the constraint E = 0. The trace gives
TrE = A — 397

and time-differentiating we find the important result

of Rayner’ that
() =0 =0. (83)

In view of this orthogonality property, we can define
for later use a vector ¢, by setting

(26 = Q xQ, (84)
and in consequence express & as
Q = ¢xQ, (85)

where by definition

¢ = ¢ = 0. (86)
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Differentiating this last equation we have

3-Q = 0. (87)

The procedure now is to construct additional
time-constant dyadics from the spatial derivatives
of E. The existence of a chain of such quantities
resulting from repeated spatial differentiation was
previously pointed out by Pirani and Williams,*
though not exploited by them. The success of this
procedure depends on the fact that the differentiation
process may be selectively applied to obtain only
equations which do not contain spatial derivatives
of time-dependent quantities; furthermore, with
this criterion, the procedure terminates naturally,
so that finally a complete set results—all first-order
differential equations in time only.

We first define the dyadic F by

FE—VXE=F‘_fo) (88)

where F' and f are, respectively, symmetric and
antisymmetric parts of F, and by commutation
(E = 0) it follows that

F=F =1f=0. (89)

Some of the other properties of F can be obtained
before calculating its explicit form. Since E is sym-
metric, we have Tr F = Tr F* = 0, and using the
fact that ¥V -E = 0 we find

f=31V(TrE) = —3V(Q"). (90)
From this it follows that
¥V xf = 0. 91)

Now taking the divergence of Eq. (88) gives
V:F= —V:«(VxE) = V-F — V¥ xf,

but from the commutation relation Eq. (D37) of
Paper I we have

V-V xE = —ExE + 2Q-E = 0,
so that finally also
V-F =0. (92)

We obtain the explicit expression for F by substi-
tuting from Eqgs. (15), (17), and (19) into

—V xE =V x(A + 302 — Al
=V xA+3(VxQQ — 3QxVQ,

and upon resolving find for F* and f:

F =

F’=l§-—-ﬂxB+8xQ+axE—Exa

+ 3QQ xa — 3axQQ, (93)
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(94)

Proceeding to the next level of spatial differ-
entiation we define the dyadic G by

if = 2(2Ma — (a-Q)Q — Q-B.

G=Vx[F+ixl] =G —gxl, (95)
and as before, of course, have
G=G =g=0. (96)
Indeed from Eq. (95) we can show that
g=3V-F —iVxf-V(IrF)] =0 (97

so that G is symmetric; and tracing I£q. (95) we have
TrG=TrG" = —3V-f. (98)

To calculate the explicit form of G°, Eqs. (93)
and (94) are inserted into (95), and then, using
virtually all the dyadic equations of Sec. II, it is
possible to eliminate the spatial derivatives of all
time-dependent quantities. This was the criterion
for the particular choice of G. To assist in the elim-
ination, it is convenient to introduce a new, sym-
metrie, time-constant, dyadic G* by

G' = G' + 3E-E — 3(A — Q)E
— (E:E — 109" + 22A0Q° — AL (99)
The lengthy result of all the substitutions then
becomes
G' = 36xQQ — 3QQ xé — 4xB + Bxa
4+ (6xQ) xE — Ex(3xQ) + 66 xQdxQ — (65°QQ
— 20°(6Q + Q¢) — 5Q%a + (29° + 4d° — §A)QQ
+ [E + 4QQ — 1Al] ¥ [3aa + 2QQ + o’l]
— 2[B + (a-Q)! — 2aQ] ¥ [B + (a-Q)1 — 2aQ]
—a & — 2ax[F 4 {fxl] + 2[F — x| xa
+ 1[20a’Q* — Ad® — 9Q-E-Q + 3a-E-a]l,  (100)
where the symbol & denotes the time-constant triadic
& = VE. Taking the trace of this equation, we have
Tr G* = 2B:B — 8Q-E-Q + %a-f + 50°(Q° — A).
(101)
This completes the derivation of the equations.
They are all expressed in terms of the following
two sets of quantities: (1) a, Q, ¢, B; and (2) E, F,
f, G*, &. The second set contains only quantities
whose time derivatives vanish—they can therefore
be treated as arbitrary constants whose values may
be selected at any point on each world line of the

congruence. The first set contains 14 scalars whose
time dependence is governed, either explicitly or
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implicitly, by the 14 scalar equations included in
Eqgs. (85), (87), (93), and the trace-free part of
{100). These equations are linear in, and could in
principle all be explicitly solved for, all the first
time derivatives. This is indeed already accom-
plished for € and B. Further differentiation and
substitution back would then generate the time
derivatives of all order in terms of undifferentiated
quantities, so that the entire evolution on each line
is determined by condilions at one poinl.

We have four algebraic constraints left over: Eqgs.
(94) and (101). These must hold throughout time, so
that by differentiating them and substituting back
for all time derivatives, we should obtain a further

EINSTEIN SPACES 905
set of four, in general new, algebraic constraints.
These in turn could be treated in identical fashion,
and so on and on. If this process confinues to
generate a chain of independent equations, we should
soon be able to solve algebraically for a, , d,
and B in terms of the second, time-constant, set
of quantities; so all the quantities would be time
constant, and the reduction to isometric motions
accomplished. This, however, remains to be done,
and so we cannot exclude the possibility that a
very few, very special, solutions might exist, for
which the above deseribed chain of algebraic mani-
pulation would stop, self-consistent, but short of
the complete reduction to a timelike isometry.
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The inversion problem is taken into account and solved in the framework of some models of quantum
field theories. Both cases of one and multichannels models are considered. The conditions that must
be satisfied by the phase shifts in order that they can be reproduced by the considered models are
discussed and relations are derived among the scattering phase shifts, the energies of the bound states
and the parameters of the models. It turns out that in certain cases the parameters are completely
determined while in other cases some freedom is left.

1. INTRODUCTION

HIE problem of finding the structure of the

underlying interparticle interaction from knowl-
edge of the phase shift and the energies of the bound
states, has been extensively discussed in the frame-
work of potential scattering.'

In this paper we show that this can also be done
for two classes of quantum field theoretic models,
provided that the scattering phase shifts mecets
certain conditions necessary to make the models
reasonable.

We first consider a one-channel model® which
deseribes the interaction of a spinless particle with
a fixed scatterer, the mechanism of the interaction
being such that compound states can be formed.
In this case the inversion problem can be solved,
the solution may in general depend on some free
parameters. The interest in such a model arises
from the fact that the situation it describes is not
reproducible in potential scattering.

After having discussed the Lee model as a par-
ticular case, we take into account a multichannel
model in which a separable direct interaction is
assumed between the fixed scatterer and a spin-
less particle capable of a certain number of excited
states. Also in this ease the inversion problem can
be solved, the solution now being completely de-
termined by knowledge of the phase shifts and the
bound-state energies.

2. THE DYSON MODEL

Let us consider a spinless particle ¢ of mass u
interacting with a fixed scatterer. The system inci-
dent particle plus scatterer gives rise to a certain

* Work supported in part by the Istituto Nazionale di
Fisica Nucleare.

1 See the review article by R. G, Newton, J. Math. Phys.
1, 319 (1960) and references contained therein,

* F. J. Dyson, Phys. Rev. 106, 157 (1956).

number N, of compound states. The Hamiltonian
for this model is (natural units &4 = ¢ = 1 are used)

H=IID+H1,
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Here my and my 4+ ! are the encrgies of the
ground state of the scatterer and of the 7th com-
pound state, respectively; @ = (k* + x°)}; ¢y and
¢, are anmihilation operators for the scatterer in
its ground state and for the 7th compound state,
respectively; a(k) is the destruction operator for
the ¢ particle. The form factor f(w) is the Fourier
transform of U(r), the real spherically symmetric
function of the position furnishing the spatial
shape of the scatterer. We assume that f(u) = 1,
as it follows from the normalization condition
J U@) d'r = 1. The quantity g, is the coupling
constant for the transition ground state — 7th
compound state and is real, as it follows from time
reversal invariance and Hermiticity.

We consider here only the scattering of the ¢
particle on the scatterer in its ground state. As
pointed out by Dyson, during the scattering process
transitions occur to the various compound states
almost in the same way that in nuclear reactions
the compound nucleus states are formed at inter-
mediate times of the collision process. Since in the
model the compound states are not directly coupled
among each other, all the scattering is elastic; be-
sides, only the S wave is scattered.

The discrete eigenvalues of I/ in the considered
N — ¢ sector are the roots of the equation:
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2.2
LB W = m—— dy g:9; (2.2)

Note that {*(w) must vanish at infinity more rapidly
than o' in order that the integral appearing in
(2.2) be convergent. The solutions of (2.2) are all
real. A necessary condition to have a solution of
(2.2) for @ > u is that f*(w) = 0 at that point.
We assume in the following that

f(w) >0; (2.3)

which forbids the occurrence of bound states em-
bedded in the continuum. Equation (2.2) will have,
therefore, solutions only for w < p. By induction
it can easily be seen that (2.2) can be put in the form

ﬁ(w o) + f (1/ — uz)*f(u)

V=1 w)

b4 Eg.H(w—wm)—O

]L‘I

w > p,

dy
(2.4)

The roots of (2.4) are all different from the w{®
There follows that the roots of (2.4) are also u,a.l
zeros of the analytic function

D(Z) s (.NZ.I z _gism)—l = % j:- ':;_(___y')_z dy, (25)
where
2 ni
o) = L . (2.6

Note, however, that D(z) does not have other zeros
besides the (real) roots of (2.4). So, we have a one
to one correspondence between the zeros of D(z)
and the discrete eigenvalues of .

The resolvent operator G(z) = (z — H)™

(Ol 2 G(z)'!’t ]0) == 6.,(2 — Wy D))_

Y N (1} —1lfw e(y)
G—w)" 2| y— W

X 2 0401 viG@ Y] 10),

satisfies

|0) being the vacuum state. Using this equation
the scattering amplitude is immediately obtained
on the energy shell

2
70 = 1 _Z 0.9:0] ¥:Glw + i0)¢; [0)

)
T 1brw

(Dl + 0], (2.7
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The S matrix is then given by
Sw) =1 — 8irw(w — )T W)
= D(w — i0)/D(w + i0) = >, (2.8)

Under the above hypotheses, the Levinson theo-
rem is immediately derived. Let us consider the
following integral:

1 [ [DEY
2t Jo D(2)

_ 1 [ [DEY
"2 Je. D@

where C = C, + C, + C; 4 (€., and the contours
¢, C, Ci; C. are shown in Fig. 1. The small
semicircle €, does not give any contribution since
we exclude the occurrence of a zero energy reso-
nance and the accidental coincidence of a pole of
D(2) with x. From the belhavior of D(z) for z — o

Z‘; 7%

the first term at the right-hand side can be evaluated
giving the value 7. To evaluate the second term
we note that D(z) has poles on the real axis. These
are the so called CDD poles for the considered
model.® The function D(z) can be written as follows:

H(z_wol)

dz

d log D(z),

Cy4Cy

1
+ %

DE) ~ =z (2.9)

D@) = "'N.—.
z g' H (2 - z(o))
i=]1
1 [ o(y)
-|--1r L y_zdy (2.10)

Fig. 1. The path of integration used to derive
the Levinson theorem.

3 L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev.
101, 453 (1956).
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:{rhe first term at the right-hand side has exactly
o — 1 poles; on the other hand, it is equal to

Na qz -1
.le - :,;‘-‘”] $

‘“";‘i(’h has Ny — 1 real poles and N, real zeros.
e conclude that the z;” are all real. Let us assume

that Py of them fall in the interval p < © < +®.
We then get

1
2 fc,,c.dlog D) = 8(u) — &(=)

1 [ [DEY
+3i ). DO %,
W!lere.we have indicated by C, P, small clock-
Wise m.rcles surrounding the poles on the real axis
in the interval p < w < + «. Each of these gives
a contribution equal to , so we finally get
1 D(z)]’
2 [, Doy e
(]

D(z) = 6(u) — 8(=) + (Po + .

On the other hand, the same integral can be evalu-
af.e(_i by means of the Cauchy integral formula
glving
1 f [DR))
2% J. D) %
where 7 is the number of zeros of D(2), ie., the

flumber of the discrete eigenvalues of H. Collect-
Ing the results we finally have

8(u) — 8(=) = m(n — Ny).

;Ve choose the phase shift in such a way that
(@) = 0, getting, therefore,

o(u) = n(n — No).

3. THE INVERSION PROBLEM IN THE
DYSON MODEL

Frqm the considerations of Sec. 2 it follows that
D(z) is .analytic in the cut complex z plane, it has
% real simple zeros for w < u at the positions of the
dllscrete eigenvalues w, of H, N, — P, — 1 real
zlmple poles for w < y and P, real simple poles on the

ranch cut. Moreover, Eq. (2.9) gives the behavior
of D(z) forz > =,

We take now into aceount the function

D) = eXp[—% L’_&@d&]_

Yy —z

It is an analytic function in the cut z plane, which
goes to one for z — o, it never vanishes and its
behavior for z — u is easily obtained by means
of an integration by parts:

=(Po+1+'n—Nu)7|',

(2.11)

(3.1)
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D(z) = exp [,l—r 3(x) log (u — 2)

+_,1—rf: log(y—z)da(y):\

By making use of (2.11) we therefore have that

D@) ~ const (x — 2" (3.2)
Moreover, we have
D(w = ?‘0) =5 e!t’d(u) (33)

D(w + 10)

Comparing this equation with Eq. (2.8) we can
conclude that the function

R@) = D(2)/D(). (3.4)

has no branch cut, has only isolated polar singu-
larities and zeros, and for z — @ behaves like
z/2 Y, g% It is therefore the following rational
function

R() = [If(z - wf)](z -

£ e

i=1

(3.5)

We finally get for the function D(z) the following
result:

D(z) = R(2) exp [—l fg ) dy]- (3.6)

TrJ, Yy—=2
Observing now that
2ip(w) = D(w + i0) — D(w — 0)
we finally get

o 4R (w)
P =~ =y

P [* ;
. j: prpeies dy:\ sin 8(w), (3.7
as the expression of the square of the form factor
f*(w) in terms of the scattering phase shift 8(w),
the number and the energies of the bound states
and the N, parameters z;”, > ¥, gi. P means that
the Cauchy principal value of the integral has to
be taken.

In order to see whether the form factor so obtained
meets the requirements which are necessary to make
it reasonable, we pay some attention to the bound-
state equation which can be written as

Xexp[

Na

Z; @ —LE“* = =)™, (3.8)
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where

s = £ [ £y (3.9)
T J, Yy —w

The derivative of the left-hand side of Eq. (3.8)

is always negative, while the derivative of —[¢(w)]™

is positive for « < p. Calling M, the number of

wi” which are less than u, we have only the two

following possibilities
(A) n=M+1,
(B) n= A'ID.

In case B, we moreover distinguish two cases ac-
cording to the number P, of z{”, which fall at the
right of w = u

(B') P0=No_ﬂfu"'1;
(B') P, =N, — M,.

Note that in case A we certainly have P, = N, —
My — 1. The behavior of the two sides of Eq. (3.8)
is shown in Fig. 2 for the three cases now considered.
The sign of R(w) for w in a right neighborhood of u
is governed by the number P,, since for w > 2,
R(w) is positive, and crossing each z{”, R(w) changes
its sign.

YNNI
TTRRN T

NNNNEN -
Y \i"N \' \

Fia. 2. The behavior of the functions 372,02 /(v — w{®)
(solid line) and —[¢(w)]™? (dashed line) of Eq. (3.8) in the
three cases A, B’, and B”. The intersections of the two curves
give the energies of the normalizable eigenstates of H. The
w{? are the energies of the discrete eigenstates of H, and
the 2{? the positions of the CDD poles for the model.
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Fic. 3. The behavior of the phase shift 8(w)in the Dyson
maodel for the three cases A, B’, and B” considered in Sec. 3.

We discuss now the behavior of the phase shift
in the three above cases.

A)n =M, + 1; P, = Ny, — M, — 1. The
Levinson theorem tells us that in this case §(u) =
(M, + 1 — N,). The phase shift therefore starts
from a negative multiple of = or from zero and goes
to zero for w — + . If P, is even, R(w) > 0 for
w in a right neighborhood of u, while if P, is odd
R(w) < 0 there. In order that ¢(w) be positive
sin 8(w) must be negative for P, even and positive
for P, odd in the same neighborhood w = p. This
implies that the phase shift starts decreasing. Since
8(=) = 0 and é(w) is a continuous function of w,
sin 6(w) vanishes at least N, — M, — 1 times in
the interval g < @ < 4 «. This number equals
the P, number of times which R(w) changes sign,
therefore, in order to have a positive definite ¢(w)
the behavior of the phase shift must be the one
indicated in Fig. 3. The P, poles 2" of R(w) for
w > p are therefore uniquely determmed since they
must coincide with the zeros of sin é(w).

(BYn = My; P, = N, — M, — 1. From the
Levinson theorem &(u) = =(M, — N,). Also in
this case R(w) > 0 if P, is even and R(w) < 0 if
P, is odd for @ = u. The requirement that ¢(w)
be positive definite for @ > u implies then that the
phase shift starts inereasing. In the interval g <
w < 4o sin §(w) vanishes at least P, times, i.e.,
as many times as R(w) changes its sign. It
follows that the phase shift must have the behavior
indicated in Fig. 3 and that all the z{® for @ > u
are determined.

(B”) n = My; P, = Ny — M,. From the Levin-
son theorem 8(x) = =(M, — N,). Repetition of the
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same argument as before shows that the phase
shift must start decreasing and must have the
behavior shown in Fig. 8. The 2 for @ > u are
therefore also in this case uniquely determined
by the zeros of sin 8(w).

Wfa are now in the position to discuss all the
details of the inversion problem in the considered
model. We assume that the masses my and u, the
behavior of the phase shift 6(e) from g to = and
the number and energies w; of the bound states
of H are known. Moreover we must suppose that
U}G phase shift has one of the behaviors shown in
Fig. 3. If this is not the case it is not possible to
describe the assumed situation in the framework
of f,his model. Besides, note that the situations de-
seribed in Fig. 3 cannot be reproduced in potential
scattering. The parameters of the model are: the
number N, and the energies my 4+ ! of the nor-
malizable eigenstates of H,, the coupling constants
g« and the form factor f(w). We can, in place of the
gi, consider the CDD poles, which are real and in
number equal to N, — 1, and the sum Z‘f." g%

As can be seen from Fig. 2 in cases A and B”
between the energies of two contiguous bound
states, between two contiguous zeros of the phase
shift and between the energy of the lightest bound
state and the first zero of the phase shift falls one
and_only one w”. In case B/, instead, we have an
additional discrete eigenvalue of H, between the
energy of the lightest bound state and the first
zero of the phase shift.

We observe that the behavior of the phase shift
allows us to decide if we are in one of the cases
A or B” (phase shift decreasing departing from
@ = u) or in the case B’ (phase shift increasing).
T].lerefnre the assignment of the phase shift, satis-
fying the above-mentioned requirements, and of
th_u number of the bound states, uniquely deter-
mines No, more precisely

No = n + P, the phase shift
starts decreasing, cases A and B”.
Ny = n + P, + 1, the phase shift

starts increasing, case B',

Moreover, we know approximately the positions
of the eigenvalues w” of H,, and, as we have already
remarked, the CDD poles 2 falling above w = u
which are determined by the zeros of the phase
shift,

Let us now see which other relations we have
at our disposal to determine the parameters of the
model which are still free, 1.c., the exact value of
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the N, quantities w!”, the N, — P, — 1 CDD poles
2( which fall below @ = g, the constant 2 %% ¢f
and the form factor f(w). First of all we recall that
the form factor is given by Eq. (3.7) in terms of
the parameters contained in R(w). We must, more-
over, take into account the n relations satisfied by the

known eigenvalues w, of H:

1+ 6w Z g:[n (o, — 25"’)]
IT @ — w”)

i=1,,n.

=0,

(3.10)

Note that in ¢(w;) are contained free parameters
to be determined, exactly those which are necessary
to fix the form factor. Note, moreover, that the
constant 2_%°, g7 disappears from Iq. (3.10) since
its reciprocal is contained as a multiplying factor
in ¢(w;).

Other relations which must be taken into account
are the equations giving the energies w, at which
the resonances occur, which are determined by
the phase shift

Nao No—1
2 gi 11 (e — ")
1+ $lon)

(wr — W:o])
k=1

= 0. (3.11)

Again D7, ¢* drops out. There are only Ny — n
independent relations of the type (3.11).

This can be seen in general; it is instructive to
show it explicitly in the case Ny, = 2 with no bound
states. Let us suppose that in this case we have
more than 2 relations of the type (2.11). We consider
only 3 of them which we call @, 8, and y. We re-
place now B and ¥ by the differences @« — g and
(@ — B) — (@ — 7), getting

(wu — w:‘n)(wu a w;")) = (z;:.oj - ww)

P % (w— 1)? D" (w) sin 8(w)
X == j:. (z;u; LB m)(w ) w,,) d@, (3.12)
i iy = P = o0
P M~ w)? D¥(w) sin §(w)
v e—edb—e % G
o 1)’ D (w) sin 8(w) __ ab
il fu (@ — wa)(w _w.ﬂ)("’_“’v)dw =%
(3.14)

where D”(w) is defined for real w by (3.1) with the
principal value preseription for the integral appear-
ing in the exponential. We immediately see that
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the third of these equations is independent of the parameters w{”, w{”, and z{”. Therefore, the number of
independent equations of the type (3.11) cannot exceed the minimum number of resonances, in this case 2.
We have only to convince ourselves that Eq. (3.11) is an identity.

Using now the relation
—27 sin 8(w)D"(w) = D(w + 10) — D(w — 0), (3.15)
we get for the right-hand side of Eq. (3.14)

P B (z — w*DE) B :l
=% 4r [L;*C.*E’.-&C. o (z — We — ii)(z S I.E)(z = Ry = 1,5) CB:

where the limit € — 0 has to be taken after having performed the integration on the contour €, 4 C, +
C; + C, shown in Fig. 1. We have added the contour ', + C. which gives the global contribution (—1).
The integral is immediately evaluated by means of the Cauchy integral formula; we get

P _ 31 (w, — u)Q[wa,, + 10) + D(w, — ’iU)J_
’ _1_2(% (‘-"a““’ﬁ)(wa_w'r)

However, at the energies w, of the resonances Pl = 47

from IEq. (3.3), we have T R — )t

¥ o ) Y — pridler) _ _ @ ] .

D(wg — 10)/D(wr + i0) = ¢ 1. (3.16) B [_; f ysg;)w dy] sin 5)
“

So that 3" is equal to one. It then follows that Eq.
(3.14) is identically satisfied. % {(w,. — w) normalizable state present, @.1)
Coming back to our general problem, we see )
that the equations of definition of the bound states
and of the resonances provide us with N, inde- The parameters to be determined are the constants
pendent equations from which the «{” are obtained ¢} and ©{”. In both cases gi is immediately de-

in terms of the 2N, — P, — 1 CDD poles falling termined by the condition f(x) = 1.

(¢ — ) no normalizable state.

below @ = gand of 2, ¢2. We can finally use the In the first case the relation satisfied by the
normalization condition f(u) = 1 to express 2 2, ¢° known eigenvalue wy of H furnishes the param-
in terms of the free parameters. eter w!™:

We have therefore a total of N, 4+ 1 relations; A e Y (4.2)

from them N, + 1 of the 2N, — P, free parameters
can be expressed as a function of the remaining Note that ¢(wy) does not now contain any free
ones. Therefore, in general, free parameters are
left in the model.

4. THE LEE MODEL AS A PARTICULAR CASE

As an example, we now consider the Lee model
with form factor which is a particular case of the
Dyson model.

We can now have, for the behavior of the phase
shift, one of the two situations sketched in Iig. 4,
moreover in the case in which the phase shift starts
decreasing we have one bound state of energy wy,
while if the phase shift starts increasing we have
no bound states. This situation must be assumed in
order to have N, = 1, i.e., the Lee model. Being
N, = 1 we do not have CDD poles.

For the form factor we get the expressions F16. 4. The behavior of the scattering phase shift in the Lee
model in the case of one bound state (a) and of no bound
¢ T. D. Lee, Phys. Rev. 95, 1329 (1954). states (b).
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parameter. In this case the eventug| gecurrence of
resonances does not give any additional i ﬁor(rana—
tion, since we know that the completely determined
form factor reproduces the aﬁigr;edy ‘g ;_:f :
and therefore also the resonances, PRER 8
In the second case, on the contrary, the position
of the resonance, which is certainly Drcs,ent fE sl ho
the value of the parameter (. p SMERREER

wfﬂ) = wg + g'f¢(mn). (4.3)
Again the occurrence of more than one resonance
does not give any additional information ,
The model is therefore in any case .('om letel
determined by the assignment of e lhas]; shif);
and the energy of the eventua] bound st:?te

5. MULTICHANNEL Mopgy,

We now consider the possibility that the spinless
particle ¢ be capable of excited states o pwhile
the fixed scatterer will be supposed to remain in its
grm;nd oo a FO: Si;nplicity a direct reaction
mechanism 1s postulated fo P p
elastic scattering processes.  the elastic and in-

The allowed transitionsare N 4 3 _, n + Oy
a, B =1, -, Noand the interactjop, ois assumed ti)'
be separable both in the channels ang in momentum
space, and to satisfy the requirements of Hermiticit
and time reversal invariance. We have y

H=H0+H;,

moitr + 2 [ 0.0, o,
B T Ll
H; = (2m) Z,ff T .

X Ydval)ask’) ¢k &k, (5.1)

where my and o = (i — k*)} 400 the mass
of the fixed scatterer and of the ath excited s’szs
of the ¢ particle. The operators q, (k) acrlu:f & :rz
annihilation operators for the particle g an‘:i N
respectively, while fa is a form fyetop ;{ resc:in'
the strength and the extension of the sc? ar;blg
interaction. The functions f, can pe either I;]] reael
or all purely imaginary. We assume that fow) is
different from zero and continuous iy the irnlterval
#a < @ < +o. Even though (5.1) is able to de-
scribe inelastic scattering, only g§ waves are in-
volved in the collision process,

The discrete eigenvalues for o « i
of the equation '

Hu=

are the roots

@ 1 [~ = wdly?
1+ 247# f _T_,T,,T“@dy =0. (5.2

=1
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Also in this case {2(w) must go to zero at infinity
more rapidly than «'. A necessary condition to
have a discrete eigenvalue falling on the continuous
spectrum is that all the fi which refer to open
channels vanish at that energy. Since we have
assumed that f2 never vanishes for @ > pa, we do
not have bound states embedded in the continuum
in our theory.
Let us introduce the function
. Y1 [* @ — eda®)

D) “1+§4?f,,, R g,
The zeros of D(z) are all real and fall in the energy
region @ < p,. We have a one to one correspondence
between the zeros of D(z) and the solutions of
Eq. (5.2), i.e., the discrete eigenvalues of H. The
function D(z) has branch cuts extending from the

lowest threshold g, to + .
The resolvent operator G(z) = (¢ — H) ™" satisfies

{1 4 Trace [H,G()]}{1 — Trace [H/G.(2)]} = 1,
(5.4)

where Go(z) = (z — Ho)™'. The T matrix on the
energy shell is

Tk, &) = fu(@)fs() {1 + Trace [H,Glw + 0)]}.
Using Eq. (5.4) we obtain

(5.3)

Tl k) = 09 1, o). (5.5)

The relation between the T and the S matrix is
Sup(@) = bas — Sir'w(kaks)' T as@),

which gives

Saslw) = dap
B iguosle) 58
1+ 31 [
where
0a(@) = (ko/4m)}a(w). 6.7

It is also convenient to introduce the complex
phase of Sas(w):

dap(@) = (1/2i) log Sap(w). (5.8)

The denominator appearing in the second term at
the right-hand side of Eq. (5.6) is D(w -+ i0)
written in terms of the functions ¢,. From Eq.
(5.6) it can be seen that the determinant of the
S matrix is equal to

det S = D(w — i0)/D(w + i0) = **, (5.9
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where A(w) is the phase of the function D(w — #0):
D@ — 10) = |D(w — 0)| ¢***“’. (5.10)

The phase A(w) will play a key role in the inversion
problem.

It is now possible to derive a Levinson-type re-
lation for the phase A(w) which can be taken to
be continuous in the interval g, < w < + @, Let
us consider, as usual, the integral

(DY, _ 1 [ (DY,

2% 1. D) 21 e D)
1 [ Dw + i0)
o [ d log 35 =) *

where the paths of integration ¢ = C, + C, -+
C; + C, and C. are shown in Fig. 1. Again we
have excluded the possibility of a zero energy reso-
nance. The first term at the right-hand side vanishes,
the second one can be evaluated in the usual way
furnishing

1 [ [DEY
2i J. D@)

=, A(#l) = A(m)-

The same integral can be evaluated by means of
the Cauchy integral formula giving nw, where n is
the number of zeros of D(z), i.e., the number
of bound states of H. We have then, assuming

A(w) =
Aly,) = nr. (5.11)

Let us pay some attention to the bound-state
equation (5.2). Introducing the function

ol 00 Pf 'p..(?J) i

Eq. (5.2) becomes

1= =3 6.6, (5.13)

a=]

@ < .

As previously remarked, the functions ¢?2 are all posi-
tive or all negative definite in their intervals of defini-
tion. There follows that the function —>_ %%, ¢, (w),
which is zero for @ = — o is monotonically de-
creasing in the first case and monotonically in-
creasing in the second case. Therefore, if the f,’s
are all real no bound state can be present, while if
they are all purely imaginary we can have at most
one bound state. It then follows that n in Eq. (5.11)
is certainly zero in the first case and may be zero
or one in the second case.
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6. THE INVERSION PROBLEM IN THE
MULTICHANNEL MODEL

The function D(z) defined in Sec. 5 is an analytic
function in the complex z plane cut from g, to + o,
it has a real simple zero for w < p, at the position
of the bound state, if any, and no poles. At infinity
it tends to one.

We now take into account the function

exp[—:-rj; Aly) d]

y—z
Owing to the fact that A(w) is a continuous funec-
tion of w which tends to zero as @ — + =, D(z) is
an analytic function of z in the z plane cut from
u#; to 4 = which goes to zero as z tends to « and
never vanishes for complex z. Its behavior for
z — pu follows from Eq. (5.11):

D) = 6.1)

D(z) ~ const (u — 2)".

z-u

Moreover, D(z) satisfies
D — i0)/D(w + i0) = ¢ 6.2)

Eq. (5.9) we ecan

294 (w)

Comparing this equation with
conclude that the function

R@) = D@)/D@) (6.3)

does not have the branch cut, has only isolated
simple zeros at the points of the discrete eigen-
values of H, and an isolated pole of order n at z = p.
From the behavior of D(z) and D(z) for z —» = we
obtain that B(z) — 1 for z — . It is therefore the
following rational function:

RG) = {(z -

1 no bound state.

w,)/(z — u,) bound state present,

(6.4)

We finally get for the function D(z) the following
result:

B = B eip [—}r fm ;‘(Tl’)z dy]-

We want now to see how to relate the parameters
of the model with the scattering and reaction com-
plex phase shifts and the energies of the bound state.

Let us consider the discontinuity of the funetion
D(z) across its branch cut; in terms of A(w) we
get

2 ealw) =

(6.5)

—|D(w + 10)| sin Aw), @ > u,, (6.6)

the sum extending to the channels which are open
at the energy w. On the other hand, from the relation
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defining the S matrix element for the reaction
N+ 9, = N + 8; « # 8, we get

2¢.(@es(w) = |Dw + 10)] "
X exp [i2%) — AW +1m), a8 (6.7)

We have introduced the real and the imaginary parts
855(w) and &% ,(w) of the complex phase shift 8,s.

Note that, being the ¢,’s either all real or all
purely imaginary, we must have

A(CIJ) = 2525((11) + (ﬂla‘g + ‘%)TI' (6.8)

with i, integer. The behavior at infinity of 8%4(w)
is

Suplw) ~ 32k + D, integer k,

W=

(6.9)

so that the condition that A(e) = 0 can be satis-
fied and determines m,; once §%,( ) is given. Note,
moreover, that Iq. (6.8) gives a simple relation
between all the real parts of the reaction phase
shifts, namely,

aﬁ.ﬂ(w) = 5":1(“’) 4 %(??i“ = (610)

Equation (6.8), together with the continuity re-
quirement for A(w) and the condition A(=) = 0,
enables us to determine uniquely A(w) in terms of
85(w) for @ > u,. On the other hand, below the
threshold u,, A(w) is equal to 8,,(w), a part from
multiples of 7.

Mag)T.

)

Ay W
T e m e m e ccccccs e - ———————
(a)

6{-401
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w

(e)

F16. 5. The behavior of the phase of the determinant of the
S matrix of the multichannel model considered in Secs. 5 and
6. The three curves correspond, respectively, to real form
factors f,(w) (a), to purely imaginary form factors when no
bound state is present (b), and to purely imaginary form
factors when there is one bound state (c).
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From Eq. (6.6) it follows that sin A(w) is always
different from zero for w > u,, is negative when all
the functions f, are real, and positive if all the
functions f, are purely imaginary. The function
A(w) therefore certainly has one of the three be-
haviors (a), (b), and (c¢) shown in Fig. 5. Case (a)
corresponds to real f,’s in which case no bound
state is present, case (b) to purely imaginary f.’s
without bound state, and case (¢) to purely imagi-
nary f.’s with one bound state. Note that the
knowledge of 8,,(w) for 4, < o < u, determines in
which of the two cases (a) and (b) we are, and
therefore also if real or purely imaginary f.’s have
to be taken. If there is one bound state, then we
certainly are in case (¢). Owing to Eq. (6.8), Eq.
(6.7) can be written

20.(@eslw) = (=)"** |D(w + )| e,  « = B.

(6.11)

We can now determine the form factors in the
intervals p;, < 0 < u, 2 < @ < p3, and so on,
by making use of Eqs. (6.8) and (6.11), provided
we know the imaginary parts of the reaction phase-
shifts. We get first of all®

eiw) = [— |D(w + i0)| sin A@]', m <o < p.

(6.12)
For the interval g, < w0 < uy; we proceed as follows.
From Eqgs. (6.8) and (6.11) we get
[e(w) £ ()]

= |D(w + 0)| [—sin Alw) == (—)"*1e 2",
(6.13)

From these two equations it follows that
‘PJ(W) = % ID(w -4 i())ll
X [[—Sin A(m) + (_)"‘:-6~2i:|r(n)]]

+ [—sin A@) — (=)™, <@ < g
(6.14)
e:(@) = % |D( + 0)[*

X {[—sin Afw) + (=)™ g 20}
R ["_Sin A(w) —_ (—)"'"e_ﬁ‘l-’(w)]il’

having used continuity across w = g, for ¢, and
the fact that ¢.(u,) = 0. Proceeding in this way
we can determine the form factors step by step.

From Eq. (6.13) we see that 8],(w) must satisfy

& The inversion problem has been considered for the one-
channel separable case by M. Gourdin and A. Martin, Nuovo
Cimento 8, 699 (1958). Our procedure applied to this par-
ticular case yields the same result in an extremely simplified
way.
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the condition

¢ < Jsin Aw)|; (6.15)

Slightly more complicated conditions are obtained
among the 8. 4(w) for more than two open channels.

Summarizing, the assignment of the phase shift
8, (w) in the interval p, < @ < p,, of §5(w) in the
interval @ > p,, of all the 8%,(w)’s in the interval

pr S w < ps.

915

w > pg (8 being greater than «), and of the energy
of the eventual bound state, completely determines
the model. If we arbitrarily assign the complex
phase shifts (in agreement with the unitarity of
the S matrix) for a multichannel process, we can
describe the situation by means of our model if
and only if they satisfy all the above-mentioned
conditions.
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of nonrelativistic axiomatic field theory.

1. INTRODUCTION

HE interest of the BCS model' in connection

with the (nonrelativistic) axiomatic approach of
field theory has been recognized by Haag.® He intro-
duced some of the algebraic methods, which are, by
now in current use, to show how and why this
model is exactly soluble in the limit of infinite vol-
ume. Later on his arguments have still been im-
proved by Ezawa.® We therefore do not intend to
focus on this point. Rather, we try to present a de-
tailed discussion of those aspects of the model which
are related to its symmetry with respect to the gauge
group. In particular, we want to point out that this
model indeed exhibits peculiar features whose nature
has to be taken into account in the general axioms of
quantum field theory.*

There is one paradox in the BCS model for super-
conductivity and this paradox shows itself in full
light in Haag's elegant treatment of the problem.
The derivation starts from a gauge-invariant theory
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and ends up with an Hamiltonian which is no more
invariant under the original particle gauge group;
this Hamilitonian, however, is invariant under a
new symmetry group (the quasi-particle gauge
group) which is itself nol a symmetry group for the
original theory. Haag already pointed out that this
strange feature is linked with the seemingly in-
nocent assumption that the algebra generated by the
field operators is irreducible. This can hardly be
considered as a completely satisfactory explanation,
especially if one notes that this paradox is not
proper to Haag's derivation and already appears
in the most early and traditional account of the
modern theory of superconductivity.” Indeed, the
articulation of all derivations is the Valatin-Bogoliu-
bov transformation from particles to quasi-particles
and we show that it is there that the apparent
“symmetry breaking” has to be traced. As an il-
lustration of this point, one remarks that, in the
orthodox treatment, the quasi-particle vacuum® is
not left invariant by any of the particle gauge trans-
formation, nor is it even multiplied by a phase factor.
This last fact has however not to be taken too seri-
ously since one can interpret it in terms of relative
phase change between superselection spaces. We
therefore concentrate mainly on the lack of invari-
ance of the Hamiltonian itself, a fact which is really
more disturbing.

s J. R. Schrieffer, Theory of Superconductivity (W. A.
Benjamin Company, Inc.,, New York, 1964).
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Because of widely spread prejudices and in order
to keep the reader from misunderstanding what
follows, we found it necessary to spell out already
in this Introduction the restriction we do not impose
to our scheme:

(i) We do not assume that the algebra generated
by the fields is irreducible.

(i1) We do not assume that a symmetry leaves the
center of this algebra element-wise invariant.

(iii) We do not identify “elementary description
of a physical system” with “irreducible representa-
tion of its associated algebras.” (This idea is already
present in the familiar case of a Lorentz invariant
theory, where one does not restrict the reflections to
map each coherent subspace onto itself®; the new fea-
ture is that, instead of a discrete symmetry group
like the reflections group, we are dealing here with
the gauge group, which is continuous.)

It turns out that each of the above extended
postulates is necessary for a consistent treatment of
the gauge-invariant BCS model.

2. THE MODEL

We define in the usual way the nonrelativistic,
free Fermi fields ¥, (hereafter referred to as “elec-
tron fields” or “particle fields””) as linear mappings
defined on the Hilbert space €°(R®) of the square-
integrable functions on R®, and taking their values
in an abstract B* algebra B (sce the next-to-last
remark of Sec. 4):

v, : ¥R — 8. (2.1)

The ¥,(f) are referred to as “smeared-out” fields.
The usual Fermi anticommutation rules are as-
sumed:

{w:(), ¥i(g9)} =0,
(.(f), ¥5(g)} = &.(f, 9I.

The relevant object for the theory is the B* sub-
algebra A of B generated by the smeared out fields
(and their adjoints, i.e., the closure in the norm of
B of the set algebraically generated by them).

It is appropriate for this model to imagine the
system as enclosed in a finite volume V with periodic
boundary conditions, and then to consider the in-
finite volume as a limiting case (in a sense to be made
more precise). For the sake of convenience let us con-
sider V as a cube of edge 2!, centered at the origin
of R®. The corresponding smeared out fields are
defined on the subspace €*(V) of &*(R’) consisting
of the square-integrable functions with support in V.

¢ G. Emch and C. Piron, J. Math. Phys. 4, 469 (1963).

2.2)
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These particular smeared out, fields generate (in the
same sense as above) a B* subalgebra A(V) of .
We finally define the elements a,(p) of A(V)

ai(p) = ¥d(f,), (2.3)
where
L@)=¥”V””“ €V @y
0, elsewhere,
with
p =nx/l with n & E® (2.5)

(E is the group of all integers).
The following elements of (V) play an important
role in the model:

b(p) = a:(—pla(p). (2.6)

The above definitions allow a rigorous treatment
which can parallel the more traditional accounts
of the model.""®

The original idea of the BCS model was to describe
a superconductor, enclosed in a finite box with
periodic boundary conditions, by a “reduced” Hamil-
tonian of the form

H = Hn + Hu (2'7)
where
A, = Z HO(P)
? (2.8)
= E é(P)af(P)a.('P) (7' =1, 2),
with
@) = —u + @/2m), 2.9)
and
H: = E Hl(?)
? (2.10)
= T 0) i, 9o,
with
i, 0 = [ dtdn LOVE D). @10
Let us finally introduce
A(p) = qE (p, 9)b(g). (2.12)

These objects (which are closely related to the
“energy gap’’) also play a central role in the argu-
ments presented in this paper.

Within the usual Hilbert space formalism, the free
Hamiltonian is an unbounded operator, and there-
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fore, it cannot be an element of (V). We take care
of this fact later on. The same remark could also
apply to the interaction Hamiltonian. However, it
turns out that this is not at all a drastic obstacle to
our approach, provided that we make more specific
assumptions on the interaction; the following prop-
erties are assumed on the nonlocal potential v(g, 7):

ve [dean vl <=, (213)
v(g, n)* = v(n, 8, (2.14)
2 lbp, @l < =. (2.15)

The condition (2.13) is in the heart of all our
subsequent arguments; indeed it implies that

lim |#(p, g)| = 0 (2.16)
since [from (2.4), (2.11), and (2.13)] we have
lb(p, 9| < v/V. (2.17)

Our condition (2.15) ensures that the A(p) belong
to 9(V). As a consequence, the /,(p) too, belong to
A(V), as well as the H,(p); this is almost all that
we really need in the following.

From now on we represent our algebra ¥ as a ring
of operators acting on a Hilbert space $. We also
denote this ring by ¥ since we always work in the
same representation. We require later that this
representation satisfies a certain continuity property.
IPor the time being we impose that there exists for
each p an element A(p) of A" (the weak closure of
A in H) such that

lim (¢, [5(}7) - A(.P)]!bz) = 0 forall ¢,, ¢. € 9.
¥ (2.18)

As usual the limit ¥V — = is taken over a sequence of
volumes V,(p) compatible with the given p. This
sequence of course changes with p but this is of no
importance since we do not require any uniformity
in p.

The reader may remark that all the above assump-
tions are already present (although not always ex-
plicitly stated) in the previous papers on this model
and that they are satisfied in some cases of practical
importance.

3. THE DIAGONALIZATION

Let us begin this section by a preliminary remark.
From the definition of A(p) we have that

[Ap), ai(p")] =0, forall p and p’. (3.1)
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As a consequence of (2.16),

lim (¢, (A(p), a%(@)]y.) =0 forall ¢, ¥ € D,
e (3.2)

and with a barely more sophisticated evaluation, one
obtains the general result

L!_IE (¥, [A@), ¥ (D) =0
for all f € R Vi, ¥ € 9.

Together with our assumption (2.18), this leads to
the conclusion that A(p) belongs to the center
S = NA” of A

Alp) € 3, Vp.

Since we do not want to restrict our attention to the
case where the algebra generated by the I'ermi fields
has only a trivial center, we cannot conclude as
Haag did, that A(p) is a ¢ number. Our main point
in this section is to emphasize that even without this
restriction, one can justify the usual affirmation that
“the BCS model becomes exactly soluble in the limat
of infinite volume.”

Haag’s recipe can now be followed cum grano
salis: we define a new Hamiltonian by the sub-
stitution:

A.(p) — Aip) = v*@) Ap) +hee.  (3.5)

[see (2.7), (2.10), (2.12)]. It is not the purpose of
this note to discuss in which sense this new Hamilton-
ian is a good approximation of the original Hamilton-
ian. [The fact that the commutators of the a{* (p)
with the two Hamiltonians are identical, up to a
substitution A — A, can be regarded only as an
indication that the two Hamiltonians could differ
at most by an element of the center of A"]. We
simply want to mention here that

A'(p) = Ao(p) + H{(p) + (idem with p— —p) (3.6)

can be eractly “diagonalized” and rewritten as

A'(p) = E@i®@®) + vih:®)]

and all (3.3)

(3.4)

+ (idem with p — —p) 3.7)
with
() = up)a,@) + v(p)at(—p), 3.8)
1a(p) = —v(—plai(—p) + w(—pla(p),
where
E(p) = () + [A() a*@]}, (3.9)
u(p) = A*(p)/D(p), (3.10)
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v(p) = [E(p) — «p)l/D(p), (3.11)

D@p) = {[E() — «p)]* + Al A*p)}.  (3.12)

We recall that here A(p), and consequently the
quantities defined by (3.9)-(3.12), are not neces-
sarily ¢ numbers, but are in general elements of the
center 3(). For this reason, the relations (3.8) have
to be regarded as a slight, but important generaliza-
tion of the Bogoliubov—Valatin transformalions. The
v (p) have the usual Fermi-commutation rules
and are referred hereafter as the ““quasi-particle”
smeared-out fields [by opposition to the a%(p) re-
ferred to as the “particles’” smeared-out free fields].

The interest of the substitution (3.5) is

(i) It determines (almost) uniquely E(p), u(p),
and »(p).

(ii) By a straightforward application of Valatin’s
method (for an account of this method, see for in-
stance Ref. 5), one sees that the quasi-particles
diagonalize effectively H (as well as A’) when the
volume approaches infinity.

4. GAUGE INVARIANCE

From general principles,”* one can identily =«
symmetry of a physical system as a “automorphism
of the algebra associated with the observables of
the physical system under consideration. We more-
over assume here that (when one gives a field-
theoretic description of the system) the same is
true for the algebra associated with the fields. By
this assumption we precisely mean that, if 8 is a
symmetry of the theory, it has to satisfy at least the
following axioms:

B is a bijeci.ive mapping of A onto itself which
preserves the —algebraic structure of ¥, i.e., for any
A, B, --- in A and any A, --- in C, one must have:

(i) B[4 + B] = pl4] + B[B],

(i) BlAB] = p[A]8[B],
(iii) B(NA] = M3[4], (4.1)
(iv) BlA%] = B(A]*%,

(v) B is continuous in the (|norm|-) topology of A.

The condition (v) is in fact implied by (i)-(iv) since
A is a B* ring (see Ref. 7, Th. 2.5.16). However,
whereas this continuity condition is sufficient when
one is dealing with the abstract properties of the
ring considered, it is often convenient to require
stronger continuity properties for symmetries. These
stronger continuity requirements are in general rep-
resentation-dependent, and to formulate them prop-
erly one has to specify the representation. We then
suppose that:

L. Rickart, Banach Algebras (Princeton University
Press, Princeton, New Jersey, 1960).
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(vi) The representation ¥ in 9 is such that the
automorphism # initially defined on A can be ex-
tented to the weak closure A" of .

One can prove quite generally that this restriction
does not in fact diminish the generality of the theory.
We should, however, emphasize that the property
(vi) is essential in the discussion of the transforma-
tion propertics of the ITamiltonian, since the spee-
tral projectors of H belong to A" (and not to 2 in
general). The continuity of 8 in both the strong and
the weak operator topologies relative to the con-
sidered representation can then be proved from (vi).*
From (i)-(vi) it also follows that 8 leaves invariant
the center 3(A) of A”. Nothing however indicates
that 3(A) is left element-wise invariant by B. As
we see later, the present model exhibits an example
where this strong supplementary property is nof
satisfied.

We hereafter consider the symmetry group (re-
ferred to as the gauge group) of all the *automor-
phisms g8 of A"’ (referred to as group transformations)
defined by

BLw.(N] = ﬂm‘l’.‘(f);
with g € [0, 2x),

From their very definitions, it follows that the
effect of 8 on A(p) is

BlA(p)] = ¢** A(p),

¥i € ©®RY,
i=1,2.

(4.2)

(4.3)

and therefore

BlA(p)] = € Ap). (4.4)

Since we proved that A(p) is one of the elements of
the center of ", we have exhibited here explicitly a
symmetry which does not leave the center of A"
element-wise invariant.

Before going further, and discussing some more
involved consequences of the above property, we
would like to point out some of its direct implica-
tions which contrast the usual treatment of the
BCS model. First of all we have the following trans-
formation laws [see Def. (3.8) to (3.12)]:

BlE(p)] = E(p),
B[D(p)] = D(p), (4.5)
Blu(p)] = ¢ ulp),
Blu(p)] = v(p),
which follow from (4.4), and therefore
Blvip] = ¢ Pvi(p). (4.6)

8 J. Dixmier, Les Algébres d'opératewrs dans ' espace
Hilbertien (Gauthier-Villars, Paris, 1957), Cor. 1, p. 253.
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For the sake of completeness, we could mention
here that, because of the ambiguity remaining in the
definition of the u and », these transformation laws
are not quite unique; for instance, we could slightly
modify the definition of the w and v in such a way
that the ¥ have exactly the same transformation
laws as the a. This is, however, of no importance for
the present analysis. In any case, the transformation
laws (4.5)-(4.6) are qualitatively quite different
from those usually obtained when one imposes that
the center of A" is trivial. In one sentence one can
summarize the situation and say that the generalized
Valatin-Bogoliubov transformations introduced in
the previous section preserves the gauge invariance
of the theory, whereas this is not the case with the
usual Valatin-Bogoliubov transformation. More pre-
cisely, one remarks that, for any volume V and any
compatible p [see (2.5)], we have not only

BllP)] = Ap) 4.7)
but also [see (3.6) or (3.7)]
BLH'(p)] = H'(p). (4.8)

This last invariance is nol present within the usual
formalism (see, for instance, Ref. 2).

We incidentally recall that the invariance of the
total Hamiltonian under a symmetry transformation
is not at all related to the very definition of a sym-
metry, but rather to its dynamical interpretation.
We can thus assert that within the present for-
malism, the diagonalization (and the related limiting
procedure) not only does not break the symmetry,
but also does not change its dynamical interpreta-
tion.

We now want to analyze the deeper (although
quite elementary) consequences of the fact that the
algebra 9 possesses a symmetry group G which does
not leave the center element-wise invariant. We
hereafter suppose for simplicity that B(A) C A.

We define a rcpres;entation ¢ of of the B* algebra
A as a centinuous “homomorphism of A into the
C* algebra B(9) of all bounded operators of a Hilbert
space 9 (the continuity of ¢isalready implied by the
fact that it is a *homomorphism, seec Ref. 7, Th.
4.1.20):

¢ A - o) C B(D). (4.9)

We say that this representation is compatible
with the symmetry group G of I if it is possible to
find for every 8 € G a *automorphism g’ of ¢[] such
that

e ma A (4.10)
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i.e. that there exists a commutative diagram

A A 9

el le
o[ &, elU].

If this is the case, we say that (¢, 8’) is a representa-
tion of the pair (3, @).

The first consequence of the fact that G does not
leave the center of 9 element-wise invariant [see
in particular (4.4)] is that every primary representa-
tion ¢ of 2, compatible with the gauge group, leads
to a trivial energy gap. (By a primary representation
we mean that

¢[3Q0] = (A},

i.e., that ¢[¥] is a factor; in particular, we note that
every rreducible representation is also primary.) Let
us prove our assertion.

Because of the fact that g’ is an algebraic auto-
morphism we have

(4.11)

B oglzl =¢lz], VBEG VzES3.
Now using (4.10):
elBlz]l = ¢lz], VBEG, VzEJ3,

in particular.

¢[BlA(P)]] = «[A(p)]

and since ¢ is an algebriac homomorphism from
(4.4) one gets

UlAp)] = ¢la()], VBES', VpER,
which is only possible if
¢A@)] =0, VpER,
i.e., since ¢ is a :homomorphism:
¢[A*(p) A(p)] =0, VpER, (412

which proves our assertion.

The fact that A(p) is not left invariant under the
gauge group and belongs to the center of A is there-
fore the very reason why Haag loosed the gauge
invariance of the theory when he restricted himself
to consider 9 as an irreducible algebra.

In B(H) we can now define a family of primary rep-
resentations ¢z of A:

{os|les=9¢oB, VBEG|. (4.13)

That these representations are all inequivalent
among themselves (in conformity with Haag's re-
sult) is again a consequence of the fact that G does
not leave the center element-wise invariant. Because
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of the group property in G, it is sufficient to prove
that each of the ¢z is inequivalent to ¢; to prove this,
let us suppose on the contrary that ¢ is equivalent
to ¢, i.e., that there exists a unitary mapping of
onto itself such that

UAIU™ = 5[4], YAEA. (4.14)

Using then the definition (4.13) and the conditions
(4.11), one obtains that (4.14) implies again (4.12).
The next thing to do is to decide which substitute
to irreducibility of the field algebra one has to con-
sider in order to have a “minimal” and “complete’”
description of the systems. We propose to eall
elementary, a representation ¢[¥, @] which satisfies
the condition

¢[8c] = (M}, (4.15)

where

Be=2z€ 3 |BE) =2 VBEG. (4.16)

When the center is left element-wise invariant under
@, this condition reduces to the assumption that ¢
is a primary (rather than an irreducible) representa-
tion. One reason for introducing this definition is
that, if one wishes to transfer it on the abstract
algebra ¥ itself, it has a definite meaning, whereas
this is not the case for irreducibility).

As a particular consequence of this definition, we
would like to remark that, within an elementary
representation, the “energy gap” [A*(p)A(p)]' and
consequently the “energy’” E(p) [see (3.7) and (3.9)]
are ¢ numbers. Therefore, for elementary representa-
tions, our generalized Valatin-Bogoliubov transfor-
mation (3.8)—(3.12) (which even in this restricted
case does not reduce to the ordinary Valatin—
Bogoliubov transformation) provides a true diag-
onalization of the total Hamiltonian.

Trom the information we have about our model,
we want now to illustrate by an explicit construction
the concept of elementary representation. The in-
terest of this construction not only lies in the exhibi-
tion of an example, but could also help the reader to
pass the bridge between our formalism (see also
Ref. 4) and the usual treatment of the model.***?

Let © be the Hilbert space attached to a primary
representation ¢ of . Consider now the family of
inequivalent primary representations (4.13) and form
for each (positive or negative) integer N the rep-
resentation

be = [ duogur (4.17)

acting in the space

AND M.

GUENIN

= [ dus Sam, (4.18)
where dp, = (1/27)da is the Haar measure on the
considered symmetry group @, i.e., in this model the
gauge group G = S'. [In (4.18), the indice (a") to
 is simply supposed to recall that, in the direct in-
tegral space, the representation ¢,» acts in that
space, but the $, are replicac of £.]

To show that each of the ¢y is compatible with
@, it suffices to exhibit a representation By (G) for
each N; let us then define for each 8 & G:

By(B) c ¢y = j;. dpe @av.g- (4.19)

One immediately sees that [¢, (), By ()] satisfies

ox o BlA] = By(B) ogn[Ad], VA E U VBEG,
(4.20)

and
éx[3s] = |M}. (4.21)

Starting from any primary representation ¢ of 2,
we have therefore exhibited, for each integer N,
an elementary representation of (2, G).

(The reader who prefers to start from irreducibility
rather than primarity, can obviously reproduce the
above construction for his own.)

We still want to give as an indication, the image
of the smeared out field and their transformation
laws under the above representations.

sl = [ du.e™ v (0], @22
By(8) 0 ou ()] = WD), (429
Slr@] = [ duo e, @29
By(8) o bylvi@] = € “hulrvi@)].  (4.25)

The reader is urged here to remember ¢y acts in
j¢ and not in $. [An oversight of this would lead to a
catastrophically trivial result in (4.22) or (4.24) for
instance!]

We want next to mention, in connection with the
above treatment of the BCS model, the question of
continuous versus discrete superselection rules.

Because of the structure of the symmetry group
G, we used for each elementary representation (4.17)
a continuous family of replicae $(,», of the same
Hilbert space 9 [see (4.18)]. The field operators, and
consequently the observables constructed out of
them, map each of these spaces 9.~ onto itself,
so that we can really consider them as superselection
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sectors (i.e., “coherent subspaces’). The fact that
we have here an explicit example of a theory with
continuous family of nontrivial superselection sectors
has some interesting consequences.

For instance, a well-known theorem asserts that
every connected symmetry-group maps every super-
selection sector onto itself, provided that the se-
quence of such sectors is at most countable. (For a
proof of this assertion, in terms of the lattice strue-
ture of a physical theory, see Ref. 9, corollary to
Th. 1.2; as already mentioned in Ref. 9, the proof,
however, breaks down if the later assumption is not
satisfied.) In the present model, although the gauge
transformations obviously form a connected group,
they exhibit a counterexample. In fact, classical
mechanices also exhibits such a counterexample; for
some reason, however, people are in general not
very impressed by it, having probably in mind the
prejudice that classical mechanics is “so different”
from quantum mechanics that there cannot be any
common formalism for both of them, and therefore
no meaningful analogy between them; this idea is
misleading; in fact, in the general frame of proposi-
tion calculus (see for instance Refs. 10, 11, or 4), a
quantum mechanical theory with a continuous fam-
ily of nontrivial superselection sectors has to be con-
sidered as a special intermediary case between the
two extremes constituted respectively by classical
and ordinary quantum mechanies.

The so-called infinite degeneracy of the vacua,
their transformations under the gauge group, ete.
are another, and more or less trivial aspect of the
facts exposed up to here. We would therefore like
to leave to the reader the translation in our formalism
of Schrieffer’s interesting comments (see Secs. 2.4,
2.5, and paragraph 6 of Sec. 2.7).

We only want to remark that, among all the vacua
present in an elementary representation, there exists
one vacuum state which is gauge invariant (and not

! G. Emch, Helv. Phys. Acta 36, 739 (1963). For a state-
ment of this theorem onf?, see Ref. 10.

10 G._Emch, Proceedings of the Symposium on the Lorentz
Group, 7th Annual Summer Institute for theoretical physics,
University of Colorado, Boulder, Colorado, June 1964,

W C. Piron, thesis, Lausanne, 1964.
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pure!). The existence of this state presents some
interest in our context. Because of a very general
theorem (see Ref. 12, Theorem 2.12.11, for instance)
the existence of an invariant cyclic state ensures that
B can be implemented by a unitary operator Us,.
Existence of an invariant cyclic state ensures that g
can be implemented by a unitary operator Us. How-
ever, Uy does not belong to A" [otherwise it would
leave B(A) element-wise invariant!] and can there-
fore not be constructed out of the field operators.
Its generator is consequently deprivated of any
physical significance.

One could further argue that even if it is conven-
ient to have some nice continuity properties for the
symmetries, it might be even better to “break”
the symmetry and go over to an irreducible rep-
resentation. We do not share this point of view. The
main advantage (in a quantum field theory) of an
irreducible representation is the existence of cluster
properties. However, the cluster property reflects
the loeal nature of a theory whereas the BCS model
is a highly nonlocal theory because of the very
existence of the “pairons.”

We thus think that there is no compelling physical
reason to prefer an irreducible representation in the
case of the BCS model. In last analysis, which rep-
resentation is chosen is mainly a matter of con-
venience. In this line we conclude that a reducible
representation is mostly suitable to the discussion of
the global properties of the model, whereas an ir-
reducible representation (corresponding to a fixed
gauge) is probably more adapted to certain practical
calculations.

Note added in proof. Similar techniques have also
been applied to other systems exhibiting phase
transitions. See: G. Emch, Tech. notes BN-433 and
BN-437, University of Maryland, 1966.
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It has been argued that, for sufficiently large times, the n-particle probability densities of a
moderately dense, simple gas become time-independent functionals of the one-particle probability
densities. Proofs are given for several properties of the power series representation of these functionals.
In particular, it is shown that the equilibrium value of the n-particle functional is identical to the
usual equilibrium probability density term by term, and that the corresponding generalized Boltzmann
collision integral vanishes as it should. The Green—Cohen form of the functional is shown to be a
formal power series solution of Bogoliubov’s functional differential hierarchy. Moreover, a proof is
given that the Bogoliubov and Green-Cohen forms of the functional are formally identical term by
term. It is argued that the higher terms of these two series probably diverge together.

In the course of the discussion, several new properties of the coefficient operators of the power series
for the functional are derived. Moreover, an integral equation for the n-particle functional is derived
which may have solutions not representable as functional power series in the one-particle probability

density.

I INTRODUCTION

HERE have been several studies of the long-

time behavior of the many-particle probability
densities for the case of large, dilute systems.'™®
In particular, it has been argued®’” that for such
systems, consisting of particles interacting through
short-range, repulsive forces, if the initial values
of the probability densities satisfy the product
condition, then after long enough times they be-
come time-independent functionals of the one-
particle probability density.

Adopt the convention that the symbol [n] de-
notes a set of n integers and that an integer appear-
ing as the argument of a function or operator
represents the position and momentum of the
particle named by the integer. Then the asymptotic
funetional can be denoted by f([n] | f,()) and has
been represented in the following way:*

fed 1 1@) = X35 [ aa - (wl; 1w
I[1 flsn. O

a€n]+(1]

In this equation f,(«, t) is the singlet probability

1 N. N. Bogoliubov, J. Phys. (USSR) 10, 265 (1946).
See also Studies in Statistical Mechanics, J. De Boer and G. E.
Uhlenbeck, Eds. (North-Holland Publishing Company, Am-
sterdam, 1962) Vol. 51.

* M. 8. Green, Physica 24, 393 (1958).

#8. T. Choh and G. E. Uhlenbeck, The Kinetic Theory of
Phenomena in Dense Cases, Navy Contract Rept: Nonr.
1224 (1958).

‘K. D. G. Cohen, Fundamental Problems in Slatistical
Mechanics (North-Holland Publishing Company, Amsterdam,
1962) p. 110.

¢ E. G. D. Cohen, J. Math. Phys. 4, 183 (1963).

® M. 8. Green and R. A. Piccirelli, Phys. Rev. 132, 1388
(1963), hereafter referred to as I.

7 E. G. D. Cohen, Physica 28, 1025 (1962).

density, and the ‘“‘coefficient operator” 7{™ is a

sum of products of time-independent substitution
operators each of which uniquely maps a given
phase point into another.®

The purpose of the present paper is to provide
formal proofs for several commonly supposed prop-
erties of this functional and its coefficient operators.
Moreover, the intention is to indicate the non-
algebraic steps in the proofs.

The first property is that the n-particle functional
given in Eq. (1) evaluated “at” the equilibrium
singlet density is identical with the density ex-
pansion of the equilibrium n-particle density. This
property provides a check on the validity of the
functional as the asymptotic solution and inci-
dentally provides a re-expression of equilibrium
theory.

This property has been studied before for the
pair functional, f(12|f,). In particular, Bogoliubov'
and Choh and Uhlenbeck® established it for the
first two terms of Bogoliubov’s form while Green
established it for the first two terms of his form
[Ref. 2, Eq. (1)]. In order to generalize these previous
results to all the n-particle densities, a new re-
cursion property of the coeflicient operators is
introduced which allows us to make the proofs
algebraically.

Some results related to this one are given. In
particular, it is shown that the generalized Boltz-
mann collision integral implied by Eq. (1) vanishes
when evaluated at the local equilibrium singlet
density for some fixed space point.” This result is

8 The coefficient operators are more fully defined in the
sequal by, for example, Eq. (10).

* The meaning of this last qualification is clarified in the
text.
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required in developing a generalized Chapman-
Enskog theory of the Boltzmann equation.'” For
the first two terms of the pair functional in Bogo-
liubov’s form, this result has been established by
Choh and Uhlenbeck.® The generalization to all
orders is a trivial consequence of the first property.

A second property of the functional given by
Eq. (1) is that it is a formal series solution of the
hierarchy for finite times. This verifies a necessary
property of the form of the functional and at the
same time is one part of a proof that Eq. (1) repre-
sents Bogoliubov’s functional. The proof depends
on a new expression for the commutator of the
coefficient operators ={” with the free-particle
Liouville operator.

A third property of the series given in Eq. (1)
is that it is term-by-term formally identical with
the terms of the series implied by Bogoliubov’s
method. Obviously, such identity is necessary to
ensure concurrence of the two lines of development.
Proofs of particular cases of this result have been
given before."" More generally, a proof of the
equivalence of the two forms of the pair functional
has been given by Cohen by using a uniqueness
theorem.'” In the course of generalizing these results,
a modified and more compact form of Bogoliubov’s
derivation is given; namely, his series is shown to
be the solution of a functional integral equation.
Furthermore, the proof process yields forms which
may be useful in analyzing the convergence of
integrals.

Essentially, then, some previous work on the
properties of the pair functional is generalized to
all the n-particle densities and to arbitrary orders
in the number density and some new results on the
coefficient operators r{" are obtained. The methods
are algebraical.

Incidentally, the functional integral equation
whose iteration solution is Bogoliubov’s series is
given. This result may be of some interest in view
of the growing evidence that higher terms of the
series in Eq. (1) are divergent."”*™* It may be, for
example, that the integral equation has a solution
which is not a power series in f,. In general, it is
felt that, making the formal aspects of the proofs
compact and overseeable (for example, by using

10 M. S. Green and L. Garcia-Colin, Physica (in press).

1t M. S. Green (private communication).

1 . G. D. Cohen, Physica 28, 1045 (1962).

13 J. Weinstock, Phys. Rev. 132, 454 (1963) (and another
to be published).

1 J. R. Dorfman and E. G. D. Cohen, Phys. Letters 16,
124 (1965).

15 V. Sengers, Phys. Rev. Letters 15, 515 (1965), where
full references are given.
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recursion formulas instead of graphs), provides a
useful point of departure for further analysis.

II. VALUE OF THE FUNCTIONAL AT EQUILIBRIUM

A proof will be given that the equilibrium value
of the functional is the equilibrium probability
density. The method will be to establish term-by-
term equality with the equilibrium density series
written in a suitable form. Several related results
are also given.

A useful form of the equilibrium series can be
derived in the following way. The activity series for
the n-particle density may be given by

zn+l

H) = T 5

x [a@ue@im 11 ce@, @
a€nl+(1]
where z is the absolute activity,
°gi(a) = (8/2xm)’ exp (—Bpa/2m),  (3)

and U™ ([n]; [I]) is the usual modified Ursell func-
tion."® By analogy with the dynamical ones of Ref. 6,
these may be defined recursively by:

U ([n); (D",

[A] +1kl=[1]

=BV(inl+1Il} _

e (4)
where the summation is over all distinet partitions
of [l] into two disjoint parts, [h] and [k], either of
which may be empty.'” V([m]) is the potential
energy of m particles in the configuration corre-
sponding to [m]. It should be mentioned that, al-
though U™ depends only on positions, the inte-
gration in Eq. (2) is over positions and momenta.
The equilibrium density series can be derived by
introducing a set of functions H* defined by

U™ (n); (1) = E H™ ([n); [q)

lal+ 3 [ral=(1]
a

x I

a€|n]+lal

U%a; [ra), )

where the summation is over all partitions of [I]
into [¢], (n + ¢), and other disjoint parts [r.],
any of which may be empty.”® If one inserts this

16 J. O. Hierschfelder, C. F. Curtiss, and R. B. Bird, Molec-
ular Theory of Gases and Liguids (John Wiley & Sons, Inc.,
New York, 1954) p. 145 el. seq. where references to original
papers are given. Moreover, Eq. (2) is the equilibrium value
of Eq. (2.6) of Ref. 6.

‘7qrhe symbolism for this type of summing is adhered to
in the sequel.

13 The functions H, are a generalization of Husimi’s
functions [J. Chem. Phys. 18, 682 (1950)]. E. G. D. Cohen,
Physica 28, 1060 (1962), mentions this method of deriving
the equilibrium series, It does not assume pair-wise forces.
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expression into Eq. (2) and uses the dummy charac-
ter of the integration variables, one finds that

W) = 3 o7 [ dadH @) 9D
x H Z zld‘r.

= [ DU (@ D

a€inl+lel raz0 Ta:

X H °e1(ps) - (6)

BEla,lral)

But, according to Eq. (2) for the case n = 1 the
factors appearing in Eq. (6) are just the activity
series for °f;(a) = ¢°(e). Thus, introducing for
brevity

°¢(Im)) = II °fi(), @)

am]

one has that

W) = 55 [ A (@r); (a)*6(fn] + 1)
®)
is a form of the equilibrium density series.

According to Eq. (1), the equilibrium value of the
functional is given by

1 1ot = X3 [ dawe s w
X °9(ln] + ). (9

At first sight one wants to prove equality of the
integrands in Eqgs. (8) and (9), but they are, in fact,
not equal. The integrals, however, are equal and
this will be proved by showing that they obey the
same recursion relation.

To accomplish this, we will use the result that
=™ is the solution of a recursion relation analogous

to Eq. (5); namely,
w™(n]; (1)) =

2

[el + Zlral=[1]
@

™ ([n]; [q))

X I  u@; ).

aE(n]+lal

(10)
The Ursell operators U™ are defined in terms of
S-operators $([m]) in the same way as the U™ are
defined in terms of the Boltzmann factors by Eq.
(4); that is, by

sl + ) = X

[h]l+[kl=[1

' W (fnl; [RDS(ED. (11

Finally, the $-operators are defined as the long-
time limit of a product of streaming operators by
8([m]) = lim S([m]; —7)Si(m]; 7),  (12)

where S([m]; —r7) translates the particles back-
wards in time according to the full m-body dy-
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namics, while S,([m]; =) translates them forward
according to free-particle dynamics."

In Appendix A, the recursion relation for r
given by Eq. (10) is established as a consequence
of the original one given in Ref. 6.

The important step in the proof is to realize that

w™(frl; [M)°¢(ln] + (1)
= U™ ([n; [D°6(l] + (). (13)

This result is demonstrated in Appendix B be-
ginning with a basic property of the S-operators
first used by Bogoliubov;' namely, that

8([m)) Zl‘,] p2/om = E. pi/2m + V([m]). (14)

(n)

This is simply a restatement of conservation of
energy and is valid for any point. It implies that

$([m])°¢([m]) = """ °¢([m]), (15)

from which Eq. (13) follows by algebra.”

With the result of operating with U™ given by
Eq. (13), one can derive a recursion relation for
the terms in Eq. (9). Thus, multiplying Eq. (10)
on the right by °¢([n] + [{]), using Eq. (13), and
integrating over the points [I], one finds that

L [ a@uaos; mstml + )
- X 5[ a@a; tayeetn) + )

x I 5 [ aenu® e rdeedeD.

a€ini+lel Tat

16
Introducing the modified cluster integrals by 0
b ([n]) = % AU (I]; s, (A7)
and also defining integrals 5™ by
c'°¢([n])Bi" (fn])
= 5 [ a=(); ool + @, (8)
Eq. (16) implies that
o) = 2 BI() IT b  (19)

gt ilura=l 1Sasn+ta
-

An important point to notice is that the last factors
in Eq. (16) are actually equal to b¢)(a), but that
for the infinite system with pairwise forces these

19 See Ref. 6 for a discussion of these operators. _—

® Incidentally, one can view this equation as establishing
the $-operator to be the analog of the Boltzmann factor
(instead of S_, for example).
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are independent of the position of particle o and
are, in fact, equal to b,,, the usual cluster inte-
grals. Thus, the terms in the = are operating only
on °¢ and not on the remaining factors.

Now, if one defines integrals B{™ by

B (@) = 37 [ AADE(inl; 1)°9(10D,

one finds from Eq. (5) [multiplying by °¢([{]) and
integrating] exactly the same relation for B{™ as
Eq. (19) gives for B{. But, according to Egs.
(18) and (20),

B ([n]) = Bi”(ln)) = exp {—BV([rD)},  (21)
where we have used the fact that 75" ([n]) = $([n]).
Moreover, it seems clear that once one has begun
the solution of the recursion relation with a given
I = 0 values, the solution is unique. Therefore,
B = B™ for any [ and the term-by-term equality
of the equilibrium value of the functional with the
equilibrium density series has been established.

Several related results are now easily established.
First, recall that the terms of the equilibrium density
series are known to converge for appropriate po-
tentials. Since we have just proved equality of
these with the terms of the equilibrium value of
the functional without any switching of limits or
other possibly nonrigorous steps, one can conclude
that the terms of the equilibrium value of the
functional converge.

A second result is that the equilibrium value of
the functional satisfies Bogoliubov’s boundary con-
dition. In the present notation this condition states
that the functional must satisfy

lim S(fn]; —f(fe] | $:(7)f)
= S([n]) agﬂ] file; 1).

For the equilibrium value of f([r]|f,), then, one
needs

(20)

(22)

lim S([]; —n)e”T"og(m]) = S([n)°é([nl), (23)
and, for the higher-order terms, one needs
¢' lim 8([n]; —n°()B () = 0. (24

o

But since S([n); —) conserves energy and one
can use Eq. (15), Eq. (23) is an identity for any
point [n]. Moreover, B;"([n]), being the term of
the usual equilibrium density series, vanishes when-
ever there are widely separated clusters. But for
purely repulsive forces any point eventually be-
comes complete; that is, S([n]; —7) produces a
point in which all the particles are widely separated
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and moving with the asymptotic values of their
momenta. Then the first factor in Eq. (24) becomes
a constant while the second vanishes.

The third and more useful result which can be
established by similar techniques is that the general-
ized Boltzmann collision integral vanishes when
evaluated at the local equilibrium density fo(rt)
for the fixed point r. More precisely, the generalized
collision integral may be expressed by

Cla | 1) = fd(2)L'(12)f(12 | 11(0),

where the pair functional is given in Eq. (1).
The pair-interaction Liouville operator is de-
fined by

(25)

L'(#j) = Fi;* Vi + Fii- Vi, (26)

where F,; is the interparticle force. Also, the local
equilibrium density is defined by

foltp, #) = c(8/2r, m)!
X exp {—B(P. — mv)’/2m},  (27)

where ¢, 8, and v are the local density, inverse
temperature (times Boltzmann’s constant) and
local velocity considered as functions of position
and time. Then the statement is that

C(, | folr,, 1)) = 0, (28)
where the instruction is to put f,(r,p’t) for f,(r'p’t)
in the definition of the functional.”

The result given by Eq. (28) follows by proving
that

(A2 | fo(r:, 1)) = °f(r:p%rp%), (29)

where p* = p; — mv. For, we know that the equi-
librium pair function °f (12) is even in r,; while
L' (12) is odd

To prove that Eq. (29) holds, one has only to
notice that

§([m]) c;Im] 0:(TaPa) In(ul-:'.(r.n.}
=¢ """ IT foltipa)
a€lm])

in complete analogy with Eq. (15). This is because
one has not only Eq. (14) but also

$([m)) ,é\%] . = ,.EEI,,, Pa

by conservation of momentum. Thus, beginning
with Eq. (30), the parallel to the whole previous
proof is obvious and Eq. (29) is established.

(30)

3D

2 This means, in other words, that we consider only the
zero gradient approximation to the functional. The point
o p‘i here denotes, for example, the dummy integration
variables in the definition of the functional. Also, see Eq. (30).
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III. A SOLUTION OF THE FUNCTIONAL
HIERARCHY

The purpose here is to assure ourselves that,
regardless of previous methods of derivation, the
Green—Cohen form of the functional given in Eq.
(1) is indeed a series solution of the ‘“functional
hierarchy” first given by Bogoliubov. Even if the
terms in the series do not exist, assurance that at
least one does have a representation of the func-
tional is a necessary preliminary to further work such
as resummation. In addition, the commutator of
the coefficient operators 7{” with the free-particle
Liouville operator is evaluated. This result (which
is suggested by presupposing that the Green-Cohen
form is a solution) is of some interest in itself.

That the functional must satisfy an appropriate
hierarchy is a consequence of the fact that the
probability densities for an infinite system satisfy
the hierarchy demanded by Liouville’s theorem.
In fact, the renormalized, generic, n-particle, prob-
ability densities are solutions of the system

{% + L([n])}l({n]; 0+ [ a@)

X Z::. L'@B)f(ln] + 8;8) =0,  (32)
where the renormalized n-particle density is related
to the usual one by a factor €', and e is the density
times the cube of the length parameter of the po-
tential.** This technique is simply to remind us of
orders of magnitude. The n-particle Liouville oper-
ator is defined by

L([n) = Lo(l»)) + (33)

2 L),
a.fE|n)

a<f
where L'(af) is the pair-interaction Liouville oper-
ator defined in Eq. (26) and Ly([n]) is the free-
particle Liouville operator defined by

> by |

a€(n] m

L([n]) = (34)
Suppose one seeks a solution of Eq. (32) which
is a time-independent functional of f,. By definition

M - fd('Y) 5!(["] I 11!0) 3J|§7Q
at

dhiy; ) ot !

and the time derivative of f, can be re-expressed
by using the first of Eqgs. (32). Thus, in order for
such a functional to be a solution of the hierarchy,
it must satisfy the following hierachy of intergro-
differential equations:

(35)

** The parameter e can also be considered as a purely
formal counting parameter eventually to be set equal to unity.
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— [ e 2B 1,616

+ L(nDf(ln] | ;) + «@(R][fi()) = 0. (36)

The funectional @ which has been introduced is

defined by
ain) | 1) = [ d(ﬁ){ 3 Lad)f(nl, 6 | 1(0)

— [ e HLELED) 115,165y ho) @
This differential functional hierarchy was first de-

rived by Bogoliubov.!
Consider the series solution of Eq. (36) of the form

n] | f) = E ¢fV(n] [ 1), (38)

where the terms are ordered according to increasing
powers of the density. Then, equating equal powers
of ¢ one finds a recursion relation for the terms of
the functional; namely,

— [ ey AL poyen

+ L(mDf (] | 1) + (] | fu(0) = 0. (39)

The functional ‘" is the term of 0(¢') in the ex-
pansion of e®; that is, it vanishes for [ = 0 and for
b1,

() | 1) = [ a0 T Lo, 81

n] ’ r
- fd()—“—LL,,,() LGNy | 1)

v+r-l 1

(40)
Now, according to Eq. (1),

f¢' (] | 1) = fd([ll)r""([n] [(DDe([n] + (1D,
(41)
where, for brevity,
¢([m]; 1) = .Q.; file, 1) (42)

has been introduced. The series given by Eq. (1)
solves the functional hierarchy if f§’ is a solution
of Eq. (39).

To show that this is the case, notice that by Eq.
(41)

8 (11D _ L f gy, gul; )

'sfl('Y)
% aer?,;... 3z, — 72) ,.J,Im fi().  (43)
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Inserting Eqs. (41) and (43) into the system Eq.
(39), and doing the integrations over the é-functions
yields the equation

ﬁ{L({nJ) [ == (eu; stn) + @

- fd([ll)r'"’([n}; [ Lo(ln] + [MDe(n] + [ll)}

+ @5°(l] [ 1) = 0, (44)

and the subscript G on @' denotes that it has been
evaluated using Eq. (41). It is given by

¥l 1) = =51 [ 40 T L'ad)

x [ d = e (m) + 85 [ 1)
X 6(fn] + 6 + (1 — 1]
- T [

x [t @l la) X L

YE[n]+[aq)
X [ dEDr@y; \Dé(n] + 6 + la] + bD. (43)

Care has been taken in deriving Eq. (44) so as not
to interchange differentiation with the phase-space
integrations (which are over infinite regions). Such
an interchange is the only nonalgebraic step in the
proof, and it requires that the integrals converge
sufficiently strongly in some sense. Having re-
marked on this point we proceed formally by letting
the Liouville operators operate before integration.
Thus, taking advantage of the dummy character
of integration variables to transform away the
combinatorial factors, Eq. (41) becomes

5 [ L)« @; w
= ([]; () Lo(ln] + (1)
+ AT ([n]; [ID)e([n] + [I) = 0. (46)
The operator AT{™([n]; [!]) vanishes for I = 0,
and for I > 1 is defined by
AT ([n]; (1))

=4+ 2

a€|n]
B+lal=L1)

R R (ORIT)

B+lel+lirl=[1]

2 L'aB)r(af; ),

a€(n]+lql

L'(aB)7"*"([n], B; [q])

(47)

where the summation is over all distinet partitions
of [I] into the single element 8 and two other dis-
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joint parts [g] and [r], either of which may be empty.

That Eq. (46) is indeed an identity is a direct
consequence of the following identity for the com-
mutator of 7{* with Lg:

[Lo; =™([n]; (1]
= —{L([)) + L[} (In]; (1))
= AT{([n); (1)) — ATV([n]; (2D), (48)

where L’([n]) is the interaction part of the n-parti-
cle Liouville operator [the second sum in Eq. (33)].
The new operator ATI'Y"”([n]; [l]) which appears
vanishes for [ = 0, and for I > 1 is a sum of terms
each of which contains interaction operators which
operate only on particles of the set [/]. Although a
detailed form of this operator will not be needed
here, for completeness such a form is given in
Appendix D.

The proof of the result given by Eq. (48) is
based on the analogous result for the scattering
operator; namely, that

[Lo([m]); 8([m])] = —L'([m)s([m]).  (50)

This identity has been given before.” An alternate
proof which perhaps shows more directly what is
involved is given in Appendix C. From Eq. (50)
the commutator of U with L, can be computed
(see Appendix C) and this result together with the
defining Eq. (10) for +* enables one to compute
the commutator of . This calculation is carried
out in Appendix D. Granting Eq. (50), the ex-
pressions for the other two commutators are derived
by algebraic manipulation.

Now, according to Eq. (48) one has for the left-
hand side of Eq. (46) that

[ 12D @; 1)

= 7" ([n]; [ Lo(fn] + (1)
+ AT ([n]; (1D )] + [1)

- —f d(DIL' (D™ (] (1) + AT"([n]; (1))

X ¢([n] + [1]). (51)

But the right-hand side of this equation vanishes
identically because every term is either a space
gradient or a momentum gradient with respect to
one of the variables of integration. Therefore Eq.
(46) holds.

Since the wvalidity of Eq. (46) implies that
¢ ([n]lf,) is a solution of the recursion relation,

Eq. (39), one concludes that the Green—Cohen form
3 M. 8. Green, Phys. Rev. 136 A005 (1964).



928

of the functional is indeed a series solution of Bogo-
liubov’s functional hierarchy.

It should be remarked that if the terms of the
funetional are divergent, the proof becomes formal
but it still establishes that the series is a solution.
More precisely, it would be a formal power series
solution and as such would still contain useful in-
formation about the functional.

If one could now also show that this form of the
functional satisfied Bogoliubov’s boundary condi-
tion, one could invoke Cohen’s uniqueness theorem,'?
thereby proving equivalence between the two forms.
Since the satisfaction of the boundary condition is
conditional on the convergence of the terms of the
functional, however, a separate discussion of it is
given. An alternate equivalence proof given next
is more direct and seems more useful.

IV. BOGOLIUBOV’S FORM OF THE
FUNCTIONAL AND COMPARISON

Bogoliubov’s functional is also a series solution of
Eq. (36) and yet the terms have a different form
from those given in Eq. (1). As a preliminary to
discussing the equivalence of the two forms, a
compact but general version of his derivation will
be given which shows that his solution is the solution
of a hierarchy of functional integral equations.
The term-by-term equivalence proof is presented in
this context.

In his work Bogoliubov first assumes a series
solution of the differential hierarchy Eq. (36) so
that he is immediately led to Eqgs. (39) which he
then solves. It seems more instructive, however, to
invert these steps.

To do this first notice that

af([n] | S,(T)f,(8))

aT
= [ ae)

() LSDNE) 1, )5, o103 T),

8S,(T:(2)
(52)
where we have used the defining relation
as,
BT . Ly Sily; T). (53

Since Eq. (36) is a functional equation, one can
make a change of variable from f,(t) to S,(— T)f.(¢t),
and then, using Eq. (52), one derives that the func-
tional has to satisfy

af([n] | Si(M):(0)
T

L([nDf([r] | S.(T)f.(£)

= +ed([n] | Si(M)f.(1), (54)
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where, it may be recalled, @ is defined by Eq. (37).
Now, treating the functional ® as an inhomogeneous
term, one can write down the Green’s function
solution of Eq. (54). If, in turn, one operates on
this solution with S([n]; —T'), one finds that

i | 1,(®) = S(nl; —T)((] | S{T(0)
= g f dr S(n); =D&l | SUILW).  (55)

This integral functional hierarchy is equivalent to
the original Eq. (36) and must be satisfied at least
for any finite time T'.

At this point one supposes with Bogoliubov two
things: (a) that the boundary condition given by
Eq. (22) holds, thus imposing a weakening of cor-
relations; and (b) IEqgs. (55) continue to hold in
the limit as 7' — . Under these conditions the
functional must be a solution of a hierarchy of
integral equations, namely,

] 1) = s @Dactnl; 0
— ¢ [ dr S@l; =20 | SO, (60

This system of equations is the functional inte-
gral hierarchy already announced and perhaps two
remarks should be made. The first is that, because
of the limiting process, it is not entirely clear how
the solutions of Eq. (56) are related to those of
Eq. (36). The second is that it is certainly possible
that this system has solutions which are not ex-
pandable as functional power series.**

Continuing with the derivation of Bogoliubov’s
form, however, assume a series solution as in Eq.
(38). A recursion relation for the terms emerges
by substituting this series into Eq. (56) and equat-
ing like powers of e. Using the subscript B to indi-
cate that these are Bogoliubov’s form of the terms,
one finds that

157(] | f:(0) = $([nDé([n]; 1),
and, forl > 1,
15°(n] | f2(8)

= —j: dr S([n]; —7)®5 ([n] | Sy(Dfi(2)).  (58)

(57)

The functional ®§" is given by Eq. (40) except
that the particular terms f§’ are used. Equation
(58) is implicit in Bogoliubov's work and his ex-
plicit expression for f’ is easily recovered by using
Eq. (57) to evaluate Eq. (58) for I = 1.

Equation (41) gives the explicit expression for

% For example, it may be representable as a sequence of
nonanalytic functionals.
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the Green-Cohen form of §*’. To show directly
that here one has two equivalent representations
of the same functional, an inductive proof of term-
by-term equality will be given.

The implication which will be established for
any [n] is the following: if the terms of the two
functionals are equal up to, say, the (I — 1)th,
then the [th terms are also equal. Since the first
terms are equal by definition, a proof of this impli-
cation establishes the equivalence.

Proceed by first noticing that terms of @5 appear-
ing in Eq. (58) involve {5 only for 0 < r <1 — 1,
so that by hypothesis each of these can be evaluated
using 5. The result of evaluating &’ by using f is
already given by Eq. (45). If one again proceeds
formally by interchanging the Liouville operators
with the phase space integrals, one then has by
hypothesis that

o (In] | 1)
= L [ aqmare @; meda) + 1,

where AT is defined by Eq. (47). Using this
result in Eq. (58), one finds that the hypothesis
of equivalence for all r < I — 1 implies that

2w 1) = =5 [ ar [ a@stw); -
X AT(fnl; (DS,(f] + [1; Dé(le] + ). (60)

No additional assumption is needed in allowing
the S-operator to operate before the integration
since the operator simply instructs one to evaluate
at a certain point.

To continue the proof of the implication state-
ment, one uses the expression for AT'{™ given by
Eq. (48) to rewrite Eq. (60) and finds that

@ 1) = +3; [ ar [ a@ns; -

X L (D) + Lo(()}r (Il ()
r(fnl; (DLo(le] + 1)
X Suln] + [1; +7)4(f] + [
+5i [ dr s, =) [ a@izean-m; u

+ AT ([n]; (D) So([n] + [1; +7)e(n] + [i])-(ﬁl)

(39)

The second term vanishes, however, because every
term in the integrand contains the pair operator
L'(ij) for arguments which are contained in [I];
that is, each term contains a momentum gradient
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over which one must integrate. Moreover, it is
formally obvious that

= (8/37){S([n]; —)Su([l]; —7)
X 7™([nl; [)Ss([r] + [11; 7))
= S([n]; —2)8u([l]; —7)
X {L([n]) + L[] ([]; 1)
= ™([n]; WD La([n] + (D)} So([n] + [U; 7). (62)

Since, in the first term in Eq. (61) one is free to
transform coordinates from z; to S([I], — 7)z;, one
can use Eq. (62) to rewrite Eq. (61). The result is
that at this stage one has, by hypothesis, that

() |10 = ~tim g, [ ar [ a

X 5; {8([n); =88, —n)7™([n]; )
X So([n] + [; D}e(n] + [1;0).  (63)

The final steps of the proof are not algebraic,
nor is the justification of them trivial. In order to
complete a formal proof without interruption,
questions of justification are ignored for the mo-
ment. Obviously, one wants to perform the time-
integral in Eq. (63), but to do so one must either
interchange the two integrations or interchange
the time derivative with the phase space integra-
tion. Following the first course® and then doing
the time integral, one gets formally that

) 1) = —1im 37 [ aqu)
X (T™(n); (1], » — =™ ([n]; [ID}e(In] + [11; ©),

(64)
where we have defined the operator T by
T ([n]; (1], ) = S([n]; —7)Ss([l]; —7)
X ™([n]; [IDSe(ln] + [1; 7). (65)

But the vanishing of the first term is assured if the
Green—Cohen form of the functional satisfies Bogo-
liubov’s boundary condition. For one has by in-
spection that

tim 37 [ aq)T™ (s 1, 6@ + [0; 9
= lim S((nl; = Dfs(n] | S,

and the vanishing of the right-hand side of this
equation is Bogoliubov’s boundary condition. [See

(66)

* The conditions for either are fairly strong because the
integrals are improper.
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Eq. (22).] Thus, the argument finally yields that
by hypothesis

f}e“(i'n] I 1)

Il

L [ au n3; et +
ONEA ©7)

Thus, the implication is established. This result
can be summarized in the following way: The
formal term-by-term equivalence between the two
forms of the functional has been established grant-
ing that both forms satisfy the Bogoliubov bound-
ary condition. A complete proof requires: (a) the
existence of the terms in each form; (b) a proof
that the Green-Cohen form does satisfy Bogo-
liubov’s boundary condition; and (¢) some con-
ditions for the inversion of limit processes must be
met.

V. DISCUSSION

It has been shown by Dorfman and Cohen that
(contrary to an earlier conjecture in Ref. 6) in
three dimensions the volume of the phase space for
which one has contributions to the 4-particle term
of the pair functional is infinite."* Weinstock also
arrives at an infinite phase volume for a related
integral." Furthermore, Sengers has shown by
explicit calculation that, for hard disks in two di-
mensions, the 3-particle term in the solution of the
generalized Boltzmann equation diverges.'® With
this evidence, one should conjecture that all the
higher terms of the functional series do not exist
(at least for some kinds of f,).*® Without giving de-
tailed estimates, a number of general remarks can
be made giving the bearing of convergence questions
on the previous results.

First, the various properties of the S-operators
and their derivates are completely independent of
any convergence questions. Thus, properties such
as those in Eqgs. (13) and (14), and the results for
commutators [i.e., Eqgs. (48) and (50) as well as
LEq. (C10)] are rigorous rather than merely formal.
Second, since only such properties are used to
prove that the Green-Cohen form of the functional,
when evaluated at the equilibrium singlet density,
is equal to the usual equilibrium series, then this re-
sult is also considered rigorous along with the result
that the generalized Boltzmann collision integral
evaluated at local equilibrium vanishes.

As we have already remarked, the proof of Sec.

6 Preliminary calculation by Sengers (private communica-
tion) on the 3-particle term of the pair functional for hard
disks in two dimensions indicates that this term diverges for,

say, the Hermite polynomials (to be published in Phys.
Fluids.)
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IIT formally establishes the Green—Cohen form
of the functional as a series solution of the differ-
ential hierarchy. Clearly, the proof cannot be
made rigorous if the terms of the series are non-
existent. One can only conclude that the Green—
Cohen form is a formal series representation of
the functional. Even such formal series embody
useful information.

A fourth remark is that, as one expects, f$ will
not satisfy Bogoliubov’s boundary condition for
those f, for which it is infinite. In the spatially
homogeneous case, [5 evaluated at S,(7)f; is equal
to its value at f, which value is supposed infinite
for any point [n]. Thus, the required limit on the
right-hand side of Eq. (66) does not exist. In the
general case, there is a qualitative argument that
the integral on the left-hand side of Eq. (66) is
nonexistent. For example, consider 7% (12; 3, 7)
as a function of time, say t,, of the last collision of
particle 3 with particle 1 or 2. For points which
contribute to the divergence of the integral (e.g.,
the recollision event), it is not diflicult to see that,
considered as a function of &, T*(12; 3, 7) in-
creases sharply at time 7 from very small values
to 7(12; 3). Using f, as a variable, the integra-
tion over particle 3 then contains two parts corre-
sponding to these two values of 7% (12; 3, 7). The
part for which it is equal to =*'(12; 3) is a piece of
1§ (12) and diverges for the same reason. In its
general form, this argument implies that the limit
required by Bogoliubov’s boundary condition does
not exist.

One concludes that the uniqueness of proof of
equivalence mentioned at the end of Sec. III is no
longer valid if {5’ does nof exist. This opens up
the possibility that Bogoliubov’s terms f§"” might
exist even if the S do not. However, our fifth
remark is that the term-by-term method of Sec.
IV suggests that Bogoliubov’s terms fail to exist
whenever the Green-Cohen terms do not exist
and for the same reason. In other words, one has,
so to speak, two equivalent forms of the same infinite
quantity.

One has the following qualitative argument: The
essential reason for the divergence of [’ is that
the volume of space corresponding to tightly con-
nected points does not decrease with the size of the
diagram sufficiently rapidly. Consider a cut-off
integral of the Green-Cohen form in which the
integration over the “size’” of the diagram is trun-
cated at some finite value. Using such a cut-off

&', the entire calculation of Sec. IV can be re-
peated and the cut-off allowed to become infinite
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in the last step. Our suggestion is that all the steps
which lead to KEq. (67) are then justified and one
arrives at this same equation except that the inte-
gration over the particles [I] is truncated. This
would indicate that f§’ becomes infinite with 5.

Two final remarks may be of some interest. There
is no divergence of the functional evaluated at
equilibrium and one can speculate that the func-
tional should have a kind of continuity in the
functions f,. Thus, one feels that there should be
some class of perturbations about equilibrium (i.e.,
functions f,) for which the terms exist in spite of
the fact that they do not exist for, say, the Hermite
polynomials.”” In particular, they might exist for
functions corresponding to perturbations which are
local in configuration space. Then one might further
speculate that the equivalence proofs can be es-
tablished for this class of functions.

Such a situation seems difficult to verify, how-
ever, and in any case, the result would be of no
value for calculating transport coeflicients. It seems
more useful to speculate that a time-independent
functional exists and is a solution of the functional
integral hierarchy given by Eq. (56). One must
represent it, however, not by the present power
series but by some resummed version of it.** In
this connection one can observe that according to
Eq. (64) the divergence in Bogoliubov’s terms
might arise at the upper limit of the time integra-
tions. This suggests that a convergent representa-
tion of the functional might be achieved if the series
were resummed so as to replace the ordinary stream-
ing operator by a modified one which decayed with
time.
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APPENDIX A. RECURSION RELATION FOR =™

Equation (10) is entirely equivalent to the original
defining relation given in Ref. 6 [Eq. (4.2)]; namely,
S(n] + [1) = b3 ™ ([nl; [g])

lal #lr1+2-leal =111
,

% T

a€[nl+(al

S(OC; [th])gn+q"2([?.])1 (AI)

where

27 We wish to acknowledge private communication with
E. G. D. Cohen on this point. See also Ref. 26.

28 Such a resummed series might involve the modified
S-operator imf)licit, in the work of K. Kawasaki and I
Oppenheim, Phys. Rev. 139, A1763 (1965).
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0D = 3 - R = T s, @2

»=1 el A=l
tnlop

The summation in Eq. (A2) is over all distinet par-
titions of [r] into p nonempty parts.

In complete analogy with the definition of the
equilibrium modified Ursell function [see Eq. (B1)]
one defines

WOl () = 3 s(ind + (DD,

where 9, is given by Eq. (A2) for ¢ = 0. Equation
(A3) is precisely the solution of the recursion re-
lation Eq. (11). This is quickly established by
direct substitution if one notes the identity:

> SR = 8.,

[al +lpl=[w]

(A3)

(A4)

where §,,, is the Kronecker symbol. This result,
in turn, is already established by the combinatorial
argument given at the end of Appendix A of paper I.
Substituting the expression for $([n] + [k]) given
by Eq. (Al) and rearranging the order of summa-
tions one finds that
b

w™([nl; [1) =
|u|+|rl+2_3[..|-m

Sa; [s.) 2

[ral+ilral=[r])

=" ([n; [a))

Insa=a([ri D Lo([r2]) -
(A5)

But it has already been shown in Ref. 6 [i.e., Eq.
(A5)] that

tral+iral=(rl Iy oo([r D Io([r2])
= _ X II s(.

zlrcl-[rl a€(r]
-

a€(nl+lal

(A6)

Putting this result into Iq. (A5) and again re-
arranging the order of summations yields

wu™([]; [1)) = 3 ™ ([n]; [q])
m+§:r,1-m
X uElln'II-l-[u] llnI+§]-lf-] S(a’ [sa])IU(““]). (A7)

But, according to Eq. (A3) the product of sums is
just the product of U™ (e; [r.]), so Eq. (A7) is
identical with Eq. (10).

APPENDIX B: RELATION BETWEEN URSELL
OPERATORS AND FUNCTIONS.

Equation (13), which expresses the result of
operating with the Ursell operator on a product of
equilibrium densities, can be established directly
from Eq. (15).
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One has that the equilibrium Ursell function is
given in terms of the equilibrium Boltzmann factors

by
U@ = X W+ WL, B
where

W([m]) = exp { =BV ([m])]. (B2)
The sum I, corresponds to I, and is defined by

@) = X (et 3 I wae). @3

Equation (B1) is the solution of the recursion re-
lation, Eq. (4), and is the usual definition; namely,
that U is the sum of all distinet products of Boltz-
mann factors, the arguments of which partition
[n] + [I] into disjoint parts, one of which contains
[n].

Now, multiplying Eq. (B3) by °¢([k]), using the
fact that the [k;] partition [k], and then using Eq.
(15), one finds that

8o([kD)°o([k]) = 9o([kD°¢([k]), (B4)
where 4, is the sum of $-operators defined by Eq.
(A2).
Similarly, multiplying Eq. (B1) by °¢([n] + [I]),
one has that

U™([n]; [1)°([n] + (1)
= > W(n] + [RD°(In] + [RDI(k])°$([k])

(A +(k)=I2]
= > S(ln] + [RD%([k)°s(n) + [1). (BS5)

(Al +1xl=11]
Since U™ is defined by Eq. (A3), Eq. (13) is es-
tablished.

APPENDIX C: COMMUTATORS OF § AND AL~

The expression for the commutator of L, with
an S-operator [Eq. (50)] is discussed and then used
to caleulate the commutator of L, with ™

Consider the operator whose limit is the S-opera-
tor. According to IEq. (12) it is defined by

8([m]; 7) = S([m]; —n)8Su([m]; 7),  (C1)
and its time derivative is
8([m]; 7)
= —L([m])$([m]; 7) + 8(Im]; 7)Lo([m]).  (C2)

Equation (50) is just the infinite time limit of this
equation.

For example, for the case of two particles, $(12; 1)
operating on any two-particle function goes from
the value of the function at + = 0 through a region
of change about the time of closest approach to an

ROBERT A. PICCIRELLI

asymptotic value equal to $(12) operating on the
function. Thus, § vanishes both when there is no
collision at any earlier time and when a collision
occurs at some finite time.

One wants to use the commutator of L, and §
given by Eq. (50) to evaluate

™ ([n]; [m])
= [Lo(ln] + [m]); W™ ([n]; [m))], (C3)
where U™ ([n]; [m]) is the modified Ursell operator
defined by Eq. (11) [or Eq. (A3)]. Equation (A3)
yields directly for v that
v™([n]; [m])
= > (=L + [hD)S(In] + [A])

[Kl#[i]l=[m]
X L([1) + 8([n] + [RD[Lo([2)); Io([ID]} , (C4)

where in the first term the commutator of § has
been evaluated using Eq. (50). Using Eq. (11) to
re-express the S-operators and rearranging summa-
tions one finds that

¥ ([n]; [m)
e 2 1 L'([n] + [q] + [r]

lel+irl+(al=Im

X W™ ([n]; [g])S([rD)9o([s])
+ 2 u"(nl; (gD

lal+ir]l=[m]
X 3 SDLOD; s@D).  (CH)
According to Eq. (A4)
X suDIL(BD; (b))
= |n1+§-m L'([u) $(ful)9s(t]),  (C6)

where [L,; 8] has been evaluated by using Eq. (50).

Furthermore, one has by definition

L([u] + D = L'([u]) + L([) + .zT,] L'(7j).
iE€E([9)

(&1)]

Using these two results in Eq. (C5), the second
group of terms is seen to cancel so that rearranging
orders of summadtion one finds that

¥ ([n]; [m])
=— > L(nl+ [@Du™(nl; [q)

lal+le)=[m]
S([ul)go([e])

¥ ¥
L) w "™ ([n]; [q])

[u)+(el=[r]

B -

itlal+irl=[m]

i€(nl+lal
X 2 8(+ [uDgu(PD.

lul+le)=1(r]

(C8)
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The first group of terms immediately simplifies
according to Eq. (A4), while in the second group of
terms one can use

>8G4+ Do)

[ul +(ei=[r]

= 2 ua”G; R

(A} +1L)1=1[r]

X I“Z,:_m S(ugo(p)) = w™G; ). (C9)
Hence, one has established that
7™ ([n]; [m])
= —L'([n] + [mD)U™([n]; [m])
- T DG DG ).
s€[n)+lal (CIO)

For our purpose an alternate form of Eq. (C10),
which explicitly separates the terms containing
interaction operators only for members of [m], is
more useful. If one again uses Eq. (C7), one can
write that

¥*([n]; m]) = = (L)) + L'([m]))u™ (fnl; [m])
> L(ij) {u™ ([n]; [m])

i€(n
iE[m]

: 2 u([n); [@DuG, FD)

lel+iri€im]—i

= 2. LU (l); [@Du”G; FD, (C11)

itlal+(ri=[m]
iElql

where the second term of Eq. (C10) has been split
into the two groups, one for which particle 7 is in
[n].

The operand of L/(zj) in the second term is, in
fact, just UV ([n] + j; [m] — 7). To see this, notice
that, according to Eq. (A3), if one splits the sum
into its two parts depending on which set contains
particle j,

w([nl; § + [m)) = " ([r] + j; [m])
+ 2 u"(nl; [q)

lal+lr)=[m]
S(uo(G + []).

X 2
[ul+(o)=1(r]
That the sum in the second term is precisely
—™(j; [r]) follows immediately from Eq. (A4)
with [w] = j + [r] (so that [I] is never empty).
Thus, one has that

v ([n]; (m)) = —[L([a]) + L'([m)]u™ ([n]; [m))
— > L'GHU™ (] + §; [m] — 3)

1€ (n)
i€lm]

- o L'GHu™([n]; ¢ + [gDU™G; ).

i+isfglrirl=Im]

i (C13)

(€12)
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APPENDIX D: COMMUTATOR OF =™

To derive the expression for the commutator of
L, and 7 given by Eq. (48), one can again proceed
in a way analogous to that in Appendix C. Thus, if
one defines

B([n) + [q]; Ir])
= _ X 11

zqul-[rl a€fn]+[al
o

UVe; [ra)), (D1

Eq. (10) which was established in Appendix A
can be written:

w™([n]; 1))
- lc]+§-lll ([n]; [a)B(In] + [q]; FD-
(D2)
To evaluate the commutator T'™” defined by

I ([n); [m]) = [L(fn] 4 [m]); =™ ([n); [m])], (D3)

one needs the solution to this recursion relation.
The solution ean be written

7™ ([nl; [m])
= 2 u™([); kDB ([n] + [k]; [1). (D4)

(Al +(1]=Im]
The quantity B™" is a sum of products of the opera-
tors U and, in fact, it will be shown elsewhere
that it is just such that each summand in Eq.
(D4) is a connected tree rooted on the set [n] 4 [A].
For the present, one only needs the property which
B™" must have if Eq. (D4) solves Eq. (D2); namely,
that

2 Bl wDB™((lg) + Bl b)) = ... (D5)

[ul +le]l=Ir
According to Eq. (D4),
' ([n]; [m))
= 2 [¥™(n); RDB'([2] + [&]; (1D

M +(2)=1m]
+ W™ ([n]; [A)[Lo; B™'(fn] + [A]; [ID]}. (D)

Since one does not want to evaluate the commu-
tator of B™", first eliminate it in favor of the com-
mutator of B by using the identity:

-3 | B(] + [gl; )

[ul +[o]l=[r
X [Lo; B ([n] + [q] + [ul; [v])]
[Lo; B([n] + [q]; [u])]

[ul #1e]=(r]

XB™!([n] + [g] + [ul; [o]).

(D7)
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The result follows directly from Eq. (D5). Moreover,
one has from the definition of B([n] 4+ [g¢]; []) that

(Lo; B([n] + [g); D]
= 22 A" DB + [q] — ¢ [4)).

i€(n] +q]
lel+(el=1lr]

(D8)

Now, if the second group of terms in Eq. (D6) is
rewritten by using Eq. (D2) to evaluate U™, the
sums can be rearranged so that the left-hand side
of Eq. (D7) appears. Thus, also using Eq. (D8), one
can rewrite Eq. (D6) in the form:

r(n); (m)) = X REA(OHG)

(Bl +1L)=m

- 2 r(nl; [gD)
sl

X M@ FDB([R] + [g] — 7; [sD)
X B7'([n] + [&]; [2]).

To continue the evaluation, divide ¥ ([n]; [A])
into two parts, v{" and v, v{* containing all the
terms for which the interaction operators operate
on members of [n], and 4{” the rest; that is, from

Eq. (C13):
N5 (1) = =L () w (); [A)
= 2 L) + b5 (6] = ),

i€ [A)

(D9)

(D10)

and
v ([n]; [A]) = —L'((R)U™ ([n]; [R])
- > LGHUO(l]; i+ [aDu G ).

t4itlgl+(rl=[a)
L]

(D11)

If one now uses Eq. (D2) to evaluate U™ and

W™ in Eq. (D10) one finds after rearranging
sums that

Wl ) = = 3 LD ([ a))
+ 2 LG (0] + 5 o) = 9)
i€lal

X B([n] + [q]; [D, (D12)

and, in particular, since L'(a) = 0,
7@ [r])
- 2 ]L’(iﬂr"’(y; [u] — HBGE + @]; ().

() +lel=(r
i€iu)

(D13)

Equation (D13) enables one to further evaluate the
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coefficient of B™! in the second term of Eq. (D9).
Thus, since by definition, if [n,] + [n.] = [n], then

B([n]; [m])

= N);l_w B([n,]; [mi])B([n.]; [ma]),  (D14)
one has
- 2 #™(nl; [g])
et
X 71" (@ PDB(n] + [q] — 4; [s])
= > ) X LG
lal+(rl+[s]=[hA) lEité\::]lvl
X 72@j; [r] — DB(R] + [q] + [); [s]). (D15)

Taken together, Egs. (D12) and (DI15) yield an
explicit expression for T'{", the part of '™ arising
from v{® and y{". Thus, substituting these two
results into Eq. (D9), rearranging summations, and
using Eq. (D5) yiclds

" ([n]; [m])
= —L'([n])r™([n]; (m)) — AT ([n]; [m]),

where AT{™ has been defined by Eq. (47).

An expression for the remaining part of '™
can be derived in a similar way. If one uses Iq.
(D11) to evaluate T'{” as given by Eq. (D9), one
sees directly that I'{” consists entirely of terms in
which the interaction operator works only on mem-
bers of [m]. This is the only result used in the text.
For completeness we only quote the following result
for T{™ in terms of previously defined quantities:

2" ([n; [m)
= —L/([m])r™((n]; [m]) — AT ([n]; [m)),

where

(D16)

(D17)

AT ([n]; [m])
= P ) fr™(n); [a) + )

itit+lal+irl=[m
iy

X[ 2  Ar®af; b)) + w6 bD]

a€(n] +lal

+ 7™([n]; [q])
% 2 > Ar™ed; [w]) A (85; DI,

lul+lel=[r] a.BE(n]+[al
a<p

(D18)
and, in turn,

Ar?(ij; [m]) = v @j; [m]) — So,m.  (D19)
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A method is derived for obtaining the tensor covariants of the finite groups, belonging to any
given factor system, starting from an arbitrary tensor of rank r in a N-dimensional vector space. The
transformation properties of the irreducible tensor operators for the projective representations of the
group have been discussed. The Wigner—Eckart theorem for these representations has also been

studied.

1. INTRODUCTION

N a previous paper’ we have studied the pro-

jective representations of finite group belonging
to any factor system. There we found out the
algebraic method of obtaining the characters of the
inequivalent irreducible projective representations
of finite groups. We also deduced, among others,
the transformation properties and the projection
operators for the basis functions, the Xronecker
(inner) direct product representation and the
Clebsch—-Gordan coefficients.

In this paper, we study the transformation prop-
erties of tensor operators belonging to irreducible
projective representations of any particular factor
system. We also derive a method for obtaining
the tensor basis of the irreducible projective rep-
resentations. Wigner-Eckart theorem can again
be written as the product of the Clebsch-Gordan
coefficient and a reduced matrix element, the ex-
pression for the latter term, differing from that
in the case of vector representation, by a multi-
plicative term which is a function of the factors.

Sirotin®* and Smith® have studied the tensor
invariants for anisotropic tensors. Smith has also
discussed different methods for obtaining tensor
invariants. Our method of obtaining the tensor
invariants (forming the basis of the identical repre-
sentation) and tensor covariants (forming bases
of other irreducible representations) depends on
the generalization of the concept of projection
operators for tensor operators belonging to the
projective representations.

Erdos’ work of finding the tensor invariants for
crystals runs in a line similar to ours, as applied
to the irreducible vector representations.

1 P, Rudra, J. Math. Phys. 6, 1273 (1965). We shall refer
to this paper as I.

2 Tu. 1. Sirotin, Dokl. Akad. Nauk SSSR 133, 321 (1960)
[English transl.: Soviet Phys.—Doklady 5, 774 (1961)].

# (3. F. Smith, J. Math. Phys. 5, 1612 (1964).

4 P. Erdés, Helv. Phys. Acta 37, 493 (1964).

The general properties of the factors of the pro-
jective representations have been deduced in Ref. 1.
We shall copiously use these results. We also want to
point out a change of notation from that used in
Ref. 1. There T, denotes the pth irreducible pro-
jective representation; here D™ denotes the same,
1 except being used as a superseript.

2. TENSOR OPERATORS FOR FINITE GROUPS:
TRANSFORMATION RULES FOR PRO JECTIVE
REPRESENTATIONS

Tensor operators have been used in quantum
mechanics for a long time in the form of spherical
tensors,” which transform as different irreducible
representations of the full rotation group. Similarly,
tensor operators may be defined”™ as belonging
to different irreducible representations of the finite
group.

If we define the Wigner operators’ O, for all
R & @, where G is the group of order g, then the
transformation properties of the irreducible tensor
operator 7% forming the 7th basis of the uth irre-
ducible projective representation D™ of the group
G will be as follows." If the coordinate basis in
the vector space V is changed by R, i.e.,

v = ukR, (1
then any function ¢(u) in V will become'
'JV = OR‘P:

where
Y'(u) = Ozy¥(u) = [1;[;’”3.?”?.&]”29'[’(“12_1): (2

t M. E. Rose, Elementary Theory of Angular Momentum
(John Wiley & Sons, Inc., New York, 1957).

¢ U. Fano and G. Racah, Irreducible Tensorial Set (Ac-
ademic Press, Inc., New York, 1959).

7 H. Weyl, Classical Groups (Princeton University Press,
Princeton, New Jersey, 1946).

8 H. Weyl, The Theory of Groups and Quantum Mechanics
(Dover Publications, Inc., New York) (English transl.)

9 E. P. Wigner, Group Theory and its Application to the
Quantum Mechanics of Atomic Spectra (Academic Press, Inc.,
New York, 1959) (English trans{).
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and the tensor operator T% will transform as

):_1_

7 R.R—!

= 0zT%0p- = DERT. &
where wp,q for P, Q © G are the factors of the
projective representation.’'® The rank of the tensor
is suppressed in the notation.

We now show that, with respect to the tensor
bases T%'s ,the Ox’s behave as the projective repre-
sentation of @ belonging to the complex conjugate
of the factor systems to which D’s also belong, i.e.,

to wk o = 1/wp o for all P, Q € G. Thus

050:T0r-05-+ = 0§ 20sxT0p-15-+ 4)
for all p and 1.
Proof.
050;T0p-05-
- Z DY (R™0sT05-
-—1 S pw®Y) DR(SHT:
We - Ws 8=+ .k
_ Wr-1.s- WSk R1S 1 Z DY(R™ ST
Wg. p-Ws,s-1  WSR.R-1S
= w¥ x0suT0p-:5-1,
since
Wr-r, g-Wsr,p-15-+/Wr R~ W5, 5
= Ws.rWsR, k-5, 51 /Ws ROR R~ W5, 51
= ws,p0r.n-1/Ws 0p. R+ = 1/ws e = 0} .
3. PROJECTION OPERATORS FOR TENSOR

OPERATORS

In this section we show how to obtain the irre-
ducible tensor basis 7% from any tensor T of rank =
in an N-dimensional vector space V. Our method
is a generalization of Wigner projection operator
P which, operating on any function ¢, gives the
#th functional basis of the uth irreducible repre-
sentation.”"""""

We define a corresponding projection operator
P! whose action on any arbitrary tensor T gives a
new tensor T% which, as is shown, transforms
according to Eq. (3):

T3 = PPT = 3 D (R)0sT0s-,  (5)
g ree

where n, is the dimension of the irreducible pro-

10 M. Hamermesh ouevTheory and ils Application to
Physical Problems (A(idla esley Publishing Company, Inc.
Reading, Massachusetts, 1962).

P. RUDRA

jective representation D™. We first explain the
meaning of 0,T0z-.. The components of the tensor
T of rank r in a N-Dimensional vector space V may
be looked upon as spanning the space V" of dimension
N'. This space will in general be reducible under the
operations of the group G. The components of
0zT04-. may be interpreted as the transformed
components of T under a basis change in V by the
operation B & (. With this interpretation, Eq. (4)
is also valid for T. Now we show that T%'s obtained
from (5) form the 7ith basis of the pth irreducible
projective representation. We have to utilize, in
this process, the Eq. (4) and the basic property of
the factors of the projective representation.'

Proof:

OST':OS_. = L D(“,(R)OSORT()R-IOS—I
7 rce
=2 5 0% 2 DP(S'SR)0sxT0g-s-
g rce
1
— (n) Sl w SR
*E ( ) aq Rgms RWS=1 SR ki )
X 0spT0g-1 g
= z 1 (n)(g ) E D:?l (SR)
ko @s.8- 9 SHEG
X OspTOp-15-
=% D (S™)T.
k Wg s

4. WIGNER-ECKART THEOREM FOR PRO JECTIVE
REPRESENTATIONS
In Ref. 1, we have shown that, under a coordinate
basis transformation in the vector space V, the <th
functional basis of the pth irreducible projective
representation transforms as

[0r¢) = Or [¥0) = E DY(R) [¥)). (6

The basis functions (| of the dual space V* will
transform as

(O=yi| = 2 = D‘”’(R")(t#TI, @)

so that the orthonormahzatlon of the functions
1s maintained:

(OR‘Jb:lOR"’:) = iZ;wR Df (R ') DW(RK\VI‘I”)

e

i Wr- R

DNEB) = 8.

(u)(R ) D(.u)(R)

I
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Combining Eqs. (3), (6), and (7) we get for the ma-
trix element (r'a’?'| T? |rei| (where o', u, « are the
irreducible projective representations, i/, m, ¢ are
the components, and 7',  are any other param-
eters characterizing the states):

{(r'a/d’| T, |7a1) = {Ox(r'a’i")| OrT40r-: |Ox(7ai))
= Z_L_ D‘(-T;-?')(R_') 1 D(::,),(R_l) D::a)(R)
i'mi WR =1 Wpr p=1
X (x'a§'| T4 |raj).

Using Eqs. (21) and (30) of Ref. 1 for the Kronecker
inner direct product and the Clebsch—Gordan coef-
ficients, we have

(V| Th |rad)- 3 we.r=s[ ] wr.pwp )™
REG PEQ
_ 9 st *
= L (72, pm | 7ad)
Na

X 22 Ar'a'f'| Th |raj)(raj | v'a’y’, un).

i‘nj
Now, since
‘dx.n—-wn—-.n/wn.PwP.R
= Wp, gWp g-Wr-1 pWE, p/Op PWP R
= wP.RwPR.R"‘wR“,RP“’R.P/“’P.RWR.P
= Wpr.p-'WR-1,RP
for arbitrary P & (, we obtain
-1/2¢
Z mx.x-'[ H Wr,PWP . &)
REG PEG
1/2
E I: ‘-UR.R-'WR--.R)“:! ?
REG H Wg, pWp R
rPeEq

Z [ H wPR.R‘le_',RP]Ilzc

RE@ PEG

E [ IE'E wR..PWP,R]”%-

li

REG P

Thus we can write
(r'e’t’| T | 1ot = ﬂ“fﬂ-ﬁ’a'i', um | rat),
(8)

937

where the reduced matrix element
(e[| T* |[1-a) = (g9/ E ( H wR.POJP.R]m’)
REG@ PEQG

X 3 (r'a'i| T |raj)raj | v'af’, um)
©)

does not depend on the components 7/, m, and ¢z,
and differs from the similar expression for the vector
representations only in the multiplicative term

g/ﬂ; [Pg wr,pwp,r]"".

Here we shall like to point out that Eqgs. (8)
and (9) are valid only for simply reducible groups,'*°
e, groups which satisfy the following two con-
ditions:

(a) All classes are ambivalent (i.e., every element
of the group is equivalent to its inverse), and

(b) the Kronecker inner direct produect of any
two irreducible representations of the group contains
no irreducible representations more than once.

The generalization''"'* of Wigner-Eckart theorem

for non-simply reducible groups may be approached
in the same line as is done by Ginibre'' for simple
Lie groups.

5. CONCLUSION

We have thus obtained the transformation prop-
erties of irreducible tensor operators for the pro-
jective representation of finite groups, belonging
to any factor system. A method is also deduced
for obtaining the tensor invariants and covariants
of finite groups for these representations and the
form of the Wigner-Eckart theorem is given in
this case. All these formulas can be used for vector
representations if we note that in this case wp,q = 1
for all P, Q@ € G. The importance of the projective
representations lies in the fact that Wigner anti-
unitary representations’ are actually projective
representations, belonging to a particular factor
system.

1 J. Ginibre, J. Math. Phys. 4, 720 (1963).
12 (3, E. Baird and L. C. Biedenharn, J. Math. Phys. 5, 1730
(1964).
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We extend a method previously presented for the three-body problem with attractive interparticle
potentials to the case of repulsive interparticle potentials, with periodic boundary conditions on each
particle. As before, we decompose the wave function into three parts, and from the Schridinger
equation write equations for these parts. We observe that, in one-dimension and for §function po-
tentials, these equations ean be easily solved numerically, and we present these solutions for potential
“strengths’ ranging from zero to infinity. We then discuss a more general method for solving these
equations, which method involves expansions in a certain set of two-body functions. This general
method is not necessarily limited to either one dimension or é-function potentials, but, as a check on
it, we do apply it to that case and get good agreement with the previous numerical results. As afurther
exploration of the method, we apply it to square well potentials in one dimension. In an Appendix we

discuss the set of two-body functions that we use.

INTRODUCTION

N previous papers' we have considered the prob-
lem of finding the ground-state energy and eigen-
funection for three identical particles bound by pair-
wise attractive potentials. It is then natural to try
to extend the method of solution to repulsive po-
tentials and it is this problem we consider here. For
purely repulsive potentials there is, of course, no
bound state, so to define the problem we must im-
pose some kind of external boundary condition; we
take this to be the conventional periodic boundary
condition. The method is presented for one-dimen-
sional problems, but there is no intrinsic limitation to
one dimension in it. For simplicity, and to explain the
method without extraneous details we have dealt
mainly, but not exclusively, with é-function repulsive
potentials, but again there is no limitation in princi-
ple to these; thus in the last section we discuss the
case of square potentials. These one-dimensional
problems are still models in the sense that there are
no physical systems to which the results apply di-
rectly; rather, we are interested in them as applica-
tions of our general method. We have, therefore, not
presented profuse numerical results for them, but
have gone only to the point required to show that
the method works in their case. We have also tried
to highlight the new features that repulsive po-
tentials introduce and to discuss them in terms that
can be transcribed to three-dimensional problems.
One such feature, which is worth consideration in
its own right, is the introduction of a complete set
of two-body functions which serve as a set of basis
functions for expansion in the three-body problem.

1 L. Eyges, Phys. Rev. 121, 1744 (1961); J. Math. Phys.
6, 1320 (1965).

The outline of the paper is as follows. In Sece. I
we present and discuss some general equations for
the problem. In Sec. IT we apply these to §-function
potentials and observe that they then reduce to a
particularly simple form which can be solved by
easy numerical calculation. We do this to provide a
useful test case against which we can later check
the results got from our more general method. In
See. IIT this general method is presented. In Seec.
IV we go back and, as a check, solve the s-function
case with it. The results agree well with those derived
by the special method of Sec. II. Finally, in the same
section we briefly treat the case of square well re-
pulsive potentials,

I. GENERAL EQUATIONS

‘We consider the one-dimensional problem of three
particles, identical and of mass m, with coordinates
Ty, T, 3, and with pairwise interaction forces, i.e.,
with total potential energy

V(z, — z|) + V(|2s — 25)) + V(|ze — 7). (1)
The ground-state energy of the system is § With

2 2mV
E = Z:S, v = ng,

the Schridinger equation for the wave function is

vy = o(|z; — z;]),

(_va + vy + vz + Uzs)'l’ = E‘I’, (2)
where
2 _ 9 9
V= ars + dzs + ors

As we have explained previously' and hence do not
expand upon here, it is part of our method to work
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simultaneously with three different sets of coordi-
nates. These are redundant in that any single set
would suffice to characterize the problem; nonethe-
less, it is very advantageous to use all three. We
have already seen' some of the advantages of these
sets for the problem with attractive potentials. It
is interesting to note that Fadeev® has also found
similar sets of coordinates advantageous in scat-
tering problems and has used them to derive many
results of formal scattering theory for three-body
systems.
A typical set (z,2, ¥5, X) is defined by

Tz = T, — T, Ys = 233 — T — T, 3)

X =z 4+ x4 z,,

with sets (2,4, 72, X) and (2.3, 3, X) defined analo-
gously. The Laplacian becomes typically in these
new coordinates

9’ a* 9
2 — — me——y
v 2 Aziy -6 s B X

Tollowing our previous work we now define a func-
tion® Y., (2,2, ;) which satisfies

_vz\bxz + 0¥ = Eleg (4)

with similar equations for y,; and y,;. We sometimes
refer to ¥, as a “two-body orbital” for reasons we
have discussed elsewhere.! . is related to ¥ by

¥ = ¢y, + s + Y, (5)

since, if we add Eq. (4) to its two counterparts in
the other sets of coordinates, we get back Eq. (2)
for ¥, using this last relation. Thus Eqs. (4) and (5)
are equivalent to the Schrodinger equation for the
problem. Moreover, as we have discussed previously,
we know that for the ground state ¢,, will be the
same function of its coordinates that the other two
functions are of theirs, so that we have only a single
function ¢,, to determine. Thus, it is sufficient to
solve Eq. (4), which contains only the single po-
tential »,, and which is therefore appreciably simpler
than the complete Schrodinger equation. This ad-
vantage is especially marked if »,, is a potential of
finite range, i.e., one for which v,,(z) = 0 forz > .
The solution of Eq. (4) for z > =z, is then the free
particle solution. To be sure, if we considered the

* L. D. Fadeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960)
[English transl.: Soviet Phys.—JETP 12, 1014, 1961]; Dokl
Akad. Nauk USSR 138, 565 (1961) [English transl.: Soviet
Phys.—Dokl. 6, 384 (1961)]; Dokl. Akad. Nauk USSR 145,
301 (%962) [English transl.: Soviet Phys.—Dokl. 7, 600

1963)].
k 3 Henceforth, we neglect a trivial dependence of our
functions on the center-of-mass coordinate X.
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ordinary Schrodinger equation, in which vy, 4 055 -+
v, entered, there would be a region of z,, x., =3
space for which the potential is zero and hence for
which the solution would also be a free particle
solution. But this region, being a function of z,, x,, 75,
would be much more complicated to visualize and
deal with in general than in the case above.

The boundary condition we want to use is that ¥
be periodie, of period L, in x,, z,, 3 separately. This
condition will be satisfied if each of the orbitals
Vo, Yhs, Yaa 1 similarly periodie, and we now assume
this. Let us look then at ¢,, which, with this as-
sumption, can be expanded in a Fourier series,”

Y2 = E H(sy, 52, 85)

X exp [% (SIII + 832 + 3;@3)]- (6)

If we use the transformations

7, = 3X + 375, — Vs,
Ty = X = §z10 — s,
2y = X + ),

this ean be written in the form

2. Hisy, 82, 85) exp {2{—3 [% (81 + 82 + s3)

83 ,82,%

+ %_z (51 — &) + % (=8 — &+ 233)]}- (7)
The factor exp|(2wi/L)3X (s, + s. + s)] in this
expression refers to the center-of-mass motion. For
the ground-state wavefunction with which we deal
we can assume that the center of mass is “at rest,”
i.e., that s, + s, + s, = 0. If we put this condition
into (7), we conclude that the most general function
periodic in x,, 2., z; and with center of mass at rest
is [with H(s,, 8, — 81 — 82) — G(s1, 82)]

.E G(s, s2) exp {2—;:2 I:gzl—2 (51— 8) — %’- (s, +5‘2):I}.
(8)

Note that this is periodic in ,, and y, not with
period L, but with period 2L. If we write s, — s, =
n, 8 + 8 = —ny and let G(s,, s2) — C(n,, n),
we can now assume that the general expression for
Y12 is of the form®

Vio(Tiz, ¥2) = 2 Clny, ma) exp [% (1,212 +‘nzya):|-
€)

¢ A sum simp!y written as 3 ; will mean ¥ ;. ™ unless
otherwise indicated, and analogously for double or triple sums.

: It will be sufficient to assume that the function C(n,, na) is
real.
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We have deliberately omitted from this last sum the
range of values of the summation variables n, and
n, since this requires a little discussion. At first
sight it might seem that n, and n, take on arbitrary
independent integral values. This is not quite true,
however, since for arbitrary s, and s,, if 5, — s, is
even (odd) then s, 4 s; is even (odd). We must then
put in the condition in the expansion (9) that n, and
n, be both even or both odd. Instead of trying to
keep this even—odd condition always in mind, it
will sometimes be more convenient to deal with it
explicitly in the following way. We define A(n, m) by

1; n, m both even or both odd,

Aln, m) = { (10)

0; otherwise.

Then we can write (9) formally as a sum over all
integral n, and n,

Y2212, ¥s) = E Cln,, na) Alny, ns)

X exp [gilj' (nyx1a + nzya)]- (11)

With this form for ¢,,, we now turn to the solution
of Eq. (4).

The potential energy v(z,,) is defined for z, and
z, between zero and L, say, and we seek a wave-
function which is periodic in these variables. Often
when one has this periodicity condition on a wave-
function it is because the potential itself is periodic,
as in the canonical solid state physics problem of
the solution of the Schridinger equation for a peri-
odic lattice. It is convenient then to adopt the fiction
that the potential v(x,,) is periodic, i.e., to replace
v(z,2) by its periodic counterpart v,(x,2) defined by

v(z2) = 2 v(zs + nl),

A=—o

(12)

so that we are closer to this problem. This is, of
course, merely an artifice; it does mot change the
potential inside the basic domain of z,,, but merely
adds‘“replicas’ of this potential outside that domain.
Nonetheless, working with v,, we can use Fourier
series

v(Z1a) = E U(D) exp [i2rlx,/L]. (13)

If then we put (11) and (13) into Eq. (4) we get

2 l:L’ = (-E)z(%i’ + Gnéz)]C’(ni, n;) A@), ni)

g .
LE Rt ]

X exp [% (nizis + n;ya)]
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= 2 Cy, nd)U(D) Aws, nf)

Lony’ ng'

127l ;
X {exp I_E%'gg + ;—T (nixs + néya)]

Dl ]
+ exp [L‘l‘%@ o+ LTT: (niz,s + néyz):|

12wl i

+ exp |: 7 + TT (nf-l:za < néyl):l}

We transform the second and
curly brackets using

third exponents in

=3Bz + v3),
= $(8x.2 — Ya),

and then multiply by exp [— (271/2L) (n,z,2 + nays))
and integrate from zero to 2L to get

Tz = —3(¥s — Tia), Y2 =

Iy = _%(y3 + 3:Il‘)) W

[E — 2(x/L)*n} + 3n2)]C(ny, n) Alng, n,)

=3 {U(”—‘;—”—')(;(n;, na) Al ny)

ny'

n, — 2n{ — 3n,

+ U( ) )C(n;’. —n{ — 2n,)

X Alni, —n{ — 2n,)

’
s U(W)C(ﬂf. —n! — 2n,)

X Alng, —ni — 2“2)}- (14)
This is the basic equation, whose solution we now
investigate.

II. SPECIAL METHOD OF SOLUTION FOR
ONE-DIMENSIONAL § FUNCTIONS

We first want to consider Eq. (14) for the special
case of one-dimensional delta-function potentials.
We are able to solve it by a special method, that is,
one applicable only to these potentials; the solution,
besides being interesting in its own right, then
constitutes a very useful test case for the more gen-
eral method we develop later.

For the é-function potential® v(z) =
have then

té(x), we

UW) = t/L
and Eq. (14) becomes’

% Note that our definition of the §-function strength differs
by a factor of 2 from that of Lieb and Liniger, Ref. 10.
. 7 The function A(n, na) is really superfluous except when
it appears within a summation sign, so we drop it from the
left-hand side of this equation.
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TasLE I. Ground-state eigenvalues E’ and correspondin

with repulsive d-function interactions of strength ¢, an
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gheigenvect.or F(n) for one dimensional three-body problem
d wit

riodic boundary conditions over length L. F(0) is arbi-

trarily normalized to minus one: F(0) = — 1. The figures (1), (2), (3) in the boxes for F(n) mean that the number there

given must be multiplied by 10, 102, 1073, respectively.

tL E F(1) F(2) F(3) F(4) F(5) F(6) F(7)
2 0.2809 4. ﬁ37§2) 1 .09752) 4.829(3)  2.707(3) 1.730(3) 1 .20053) 8.816%4)
5 0.6327 1.025(1)  2.246(2) 9.762(3) 5.449(3) 3.476(3) 2.410(3) 1.769(3)
10 1.091 1.71(1) 3.34 2; 1.43(2) 7.92(3) 5.04(3) 3.49(3) 2.56(3)
20 1.722 2.5651) 4.09(2 1.70?2; 9.39(2) 5.96(3) 4.12(3) 3.02(3)
40 2.426 3.40(1) 3.94(2) 1.60(2 8.71(3) 5.50(3) 3.8053) 2.79(3)
100 3.197 4.22(1) 2.64(2) 1.0352) 5.50(3) 3.4123) 2.30(3) 1.64(3)
200 3.561 4.58(1) 1.62(2) 6.24(3) 3.40(3) 2.18(3) 1.55(3) 1.18(3)
[E — 2(1)°(n’ +3 ’)]C(n na) 2 F(n) = (D)Fing) T -2y 1)
L 1 nﬂ 1y 2 2, 2, - El — m2 == 3n2
_t ; ; F(l)
2y MZ [C(ni, ny) Alnf, n,) + 2(tL) :EE’ - [ — 2n,)’ 4 312] d
+ 2C(n, —n] — 2ny) AR}, —nf — 2n))].  (15) n,=01,2..-. (18)

Since n, enters this equation explicitly only through
its square, it is clear that C(n,, n.) = C(—mn,, n.).
Moreover, under the transformation n, — —n,, the
equation satisfied by C(n,, — n,) turns out to be
the same as that satisfied by C(n,, n.), whence we
conclude that C(n,, n,) = C(n,, — n,). Now we
observe that we can reduce this equation to one for
a function, eall it F, of the single variable® n, by
writing

F(n,) _
E — 2(x/Ly’m} + 3n)

Cny, ny) = (16)

If we put (16) into (15) we get

Alnf, no)
— 2(zx/L)*(n{* + 3n3)

Fou) = Fo) 7 3 5

F(n{ + 2n,) Alni, nf + 2ns)
E — 2(x/L)"[m" + 3(n1 + 2n,)°]

2

n,’

t
+ 2 7 (17)

We can simplify this equation by first noting that
if n{ is even (odd) then n] + 2n, is even (odd) so
A(n{, n{ + 2n,) is always unity in the second sum.

Also in this sum we let n{ + 2n, = I, where [ ranges
integrally from — = to «. Finally we define E’ by

E = 2E'(zx/L)’

and the equation becomes, on relabelling a summa-
tion variable,

® We see here quite coneretely an advantage of our way of
writing the wave function as a sum of two-body orbitals: it is
only as a consequence of this form that we can reduce the
problem to one for a function of only one variable.

The fact that F(n,) = F(—n.) has enabled us to
restrict the values of the n, we considerto 0, 1,2 - - -
as we have indicated. Note that the first sum in this
equation can be done although the result makes the
equation more cumbersome. But, for reference, we
have

n even
A(m, n) I - N S
z..:E' — 3 —m ..Z_:,E’ — 3n — 45

Sy oo 5 (B — 3, B> 3n',

- m ‘E 2 i ’ 2
G — ) coth2(3n E"N, E' <3n'.

n odd
A(m, n) o 1
;E'——&n’—m" e ._Z_:.,E' -3 — (254 1)°
= m™ :l'!'_ Mo 234 7 2
E(E,—_S—ﬂg);tan 2( 3n’)!, E' > 3n,

" ™ 1__" 2 __ ni ’ 2
3G — ) tanh2(3n E), E'<3n.

The set of equations that (18) represents is then our
basic set; since it is homogencous, it has solutions
only for certain eigenvalues of ', and the lowest one
is the ground-state energy we seek.

We present in Table I results on the numerical
solution of these equations. Before we discuss these,
it is worth pointing out, however, that we know the
answer to expect in two different limiting cases:
t— 0and{— «. For{ — 0 we expect the perturba-
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Fic. 1. The ground-state energy per partlcle, for a one-
dimensional N-body system with repulsive s-function inter-
particle potentials of strength f is compared with that for a
three-body system of the same linear density p. For the
three-body system £/2p — tL/6. The N-body results are due
to Lieb and Liniger," and following them we set i = 2m =1
for the purposes of this plot.

tion theory result E = 3(/L, and expect moreover
that F(0) is of the order of unity and all other F(n)
are small and of order . These results can be derived
simply from the equations above; we omit the de-
tails. For t — o we also know from the work of
Girardeau® that E' = 4 although Girardeau was
not interested in and hence did not derive expressions
for the orbitals, nor by the same token for the func-
tion F(n). Our numerical results do seem to approach
the value E' = 4 in this limit.

For arbitrary values of ¢ the eigenvalues of the
(infinite) set of homogeneous equations (18) are
determined by the vanishing of the corresponding
determinant. In practice we must of course truncate
these equations so that their determinant becomes
of finite order, and then test for the error introduced
by this truncation. We have done this numerically
for the lowest eigenvalue, by examining the sequence
of results for this eigenvalue and corresponding
“eigenvector” F(n) as a function of the size of the
truncated determinant. It turns out that for all
values of ¢ the ground-state eigenvector F(n) de-
creases rapidly with n, so that generally one gets
good convergence with truncated determinants of
relatively small order. The convergenté worsens as
tL increases; this is reflected in the smaller number
of significant figures presented for the larger values.
The largest determinants used in deriving these
results were of thirteenth order, although for the
smaller values of L accurate results were obtained
with determinants of fourth, third, and sometimes
second order.

® M. Girardeau, J. Math. Phys. 1, 516 (1960).
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To our knowledge, there are for this problem no
other results in the literature with which we might
compare the above calculations. However, Licb and
Liniger'® have solved, also numerically, the analo-
gous N-body problem in the limit N — o, L — o,
N/L = const. Now N = 3 is not, on the face of it, a
large number, but it is nonetheless interesting to see
how close the present results for the energy per
particle are to those of Lieb and Liniger, for systems
of the same linear density. For the moment then we
denote by L. the periodicity length for the N-body
system so that the linear density p is"'

p = N/L..

For the three-body system, on the other hand, the
linear density is 3/L. If then we let N/L. = 3/L
the two systems will have the same density. Now
Licb and Liniger calculate energies as a function of
the dimensionless parameter t/2p = tL./2N. We
can then compare our results with theirs by also
plotting energy against ¢/2p, which parameter for
the three-body case is {L/6. Such a plot is shown in
Fig. 1. The results for the two cases are, perhaps
surprisingly, fairly close.

III. GENERAL METHOD OF SOLUTION:
EXPANSION IN TWO-BODY FUNCTIONS

In this section we discuss a general method for
the solution of Egs. (14). An essential feature of it
is the expansion of the function C(n,, n,) in terms of
a certain set of two-body functions that we describe
below. The motivation for this is twofold. First, we
have previously discussed reasons for believing that
the orbital ,, should, as a function of z,,, resemble
a two-body wavefunction and it is then very natural
to try to expand it [or by the same token its Fourier
counterpart C(n,, n;)] in a complete set of such fune-
tions. We have also found' that such an expansion
works well for the three-body problem with at-
tractive potentials. Secondly, the introduction of
the two-body functions will enable us to eliminate
from the three-body problem any explicit appearance
of the two-body potential. This is most useful when
we consider infinite repulsive potentials (“hard
cores”), either in one or three dimensions. For it is
generally true, with a Schridinger equation involv-
ing a repulsive potential of strength v,, that even in
the limit Vi, — «© the wavefunctions and energy
levels remain unpathological. One has only to think
of a particle between high repulsive walls, say, or the

10 Flliott H. Lieb and Werner Liniger, Phys. Rev. 130, 1605
(1963).

1 Strictly, p is not N /Ly, but is the limit of this ratio as
both N and L., become infinite.
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scattering by a repulsive sphere. As we see shortly,
the expansion in two-body functions' enables us
to eliminate from the three-body problem any ex-
plicit appearance of the two-body potential itself;
instead there appears the complete set of eigen-
functions and corresponding eigenvalues of the solu-
tion to the two-body problem with this potential.
There is then no difficulty in going to the limit of
infinite potential since these eigenfunctions and en-
ergies are well behaved in that limit.

Given the potential v(z,,) that enters into the
three-body equation, let us consider the two-body
problem for a potential of this shape, but differing
in strength by a factor 1/X. As we show in the Ap-
pendix the two-body momentum space wavefunc-
tions'® (', for this potential satisfy the equation
[essentially Eq. (A12)]

[ B = 2(Z) 02 + 1 [Contrn, ) a0,

= i “Z U(’%’I;)C‘;m(ﬂ,{,nz) Alni, ns) (19)
with the orthogonality relations
..Z... Crna, 1) Crome (1, M) = 8110 B (20)
Specifically, the C,,, are of the form
Cin = Di(ny) d.(ns). (1)

Now as we have seen, the function C(n,, n,) satisfies
the same “even—odd” condition on its variables as
occurs in Eq. (19) for (.. We can then expand
C(n,, n,) in terms of these C,,, and Eqs. (14) will
become an infinite set of coupled equations for the
expansion coefficients. We write then'*
C(nlj 'nz) . E Almétm(nljnz)

(byym

(22)

and put this into (14). We have then for the first
term on the right-hand side

E U(?%)A:mém(n:s ns) Ani, no)

(L)y.mom’

= A ¢;.,. Aamétm[Egm = 2(2) (ny + n§)] A(n“ nx)-
(23)

12 Fadeev has used a similar expansion in his elegant dis-
cussion of the formal properties of the three-body scattering
problem. Cf. Ref. 2.

13 We generally use the tilde (~) to denote quantities that
refer to the two-body problem.

14 As we discuss in the Appendix, the index ! which labels
the eigenvalues takes on the values 0, 1, 2, --- | and hence
does not follow the convention of footnote 4. We indicate this
by enclosing it in angular brackets.
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We transpose this to the left-hand side, multiply the
resulting equation by C,,(n,, n,), and sum over n,
and m,. On the right-hand side we use a formula
which is a variant of (19)

gj Clns, m)U(%”‘) Alny, 1)

= )\[E., = 2(%)2@& + pf)é.,(p.,nz)] A(py, na).

We get,
(E _ AE,()A.:

X X

(Lyom,ny na

— 2(x/L)*(3 — \)
X Z N3 A 1nCrnlng, 12)Cilny, na) Alny, n)

{l),m.ng,ne

=X >

(Lyum,ny” ,na

— 2r/L)*(1 — N)
anzrnélm(nl, nz)é-((ﬂn na) Alny, no)

Alm(a!m(ﬂ"]” _n; - 27!’2)

X (C.(@n] + 3ns,n5) + Coi[—2nf — 3n,, n5]}
X (E.. — 2(x/L)"[nz + (20} + 3n5)°]))-
Now we put in the more specific form (21) for (..
We have for use in the left-hand side
E A 1, D,(n,) 8.(ny) D.(ny) 8.(n) Any, ny)

(I).,m,ny ,na

= > niA, Din) D,(n) Aln,, 1),

{L)una

(24)
>, niAi. Din) 8.(ns) D.(n) 8.(n) = £°A,,.

(L),m,ny ,ng

The first sum on the right-hand side is
N2 AwDim)) $u(—ni — 2n,) D.(2n] + 3n,)

(L), m.,n;" ,n,

x s B — 2(E) WV + nt + 3n37)

=\

2 A,,,.{E‘.‘ - 2(%)2[(21?1 + 02 + gz]}
X D.(=2m — §) D,(—2t — m) (25)

with a similar result for the second sum. Finally
Eq. (14) becomes

(B — AE, YA, — 2(}:)2[(1 - N X nld, D)

b)ong

X D,(n,) Aln,y, L) + (3 — k)tzAu]
=\ ‘gj A,,.{E.‘ — 2(%) [@m + 6 + t’]}

X D(=2t — m)[D,2m + &) + D.(—2m — 1)].
(26)
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Once again we have an infinite homogeneous set
of linear equations, whose vanishing determinant
defines the eigenvalues. Moreover, we have achieved
the objective of eliminating any explicit appearance
of the two-body potential; it has been replaced by
the complete set of two-body wavefunctions and
energies. Also we note that the parameter A in
these equations is at our disposal. We can choose it
arbitrarily, since taking different values for it merely
corresponds to choosing different complete sets of
basis functions. In principle then, the set of equa-
tions (26) has the same set of solutions whatever
the value of A. In practice, of course, we shall be
able to solve the infinite set of equations only by
truncating them, and we would like to get good
accuracy with as small a truncated set as possible.
To this end we can consider A to be a parameter
which we can try to choose to achieve this.

IV. APPLICATIONS OF THE GENERAL METHOD

In this section we first apply the general equations
(26) to the problem of repulsive & functions, and
compare the results with the exact ones of Sec. II.
Since we do have these exact results, our chief aim
will not be to duplicate them, but only to check
Egs. (26) by actually using them and also to turn
up any problems that may be involved in truncating
them. We begin then by truncating them as severely
as possible, and keep only the lowest order term;
i.e., we assume that only A, is different from zero,
so that only the lowest order eigenfunction D,(n,)
appears. Also, to conform with the conventions of
the Appendix, we add a plus superseript to Dy(n,)
although for the present purpose it is really super-
fluous: Dy(n,) — Di(n,). We get then the single
simple equation,

® =B — o) 0 ~ N Triiey

= 2MEo[D(O).  (27)

We must now choose A, which we do according
to the following prescription. With £ the ground-
state energy of the three-bedy problem, we choose
A such that the potential strength {/x for the two-
body problem would also have ground-state eigen-
value E. That is, we choose A so that £, = E.
This is, of course, the same prescription that we
used for the three-body problem for attractive po-
tentials' and the motivation for choosing it here
is the same for having chosen it there in the first
place, plus the a posteriori justification that it did
turn out to work well. Of course we do not know

LEONARD EYGES

the ground-state energy £ in advance, but we can
get A as a function of this unknown E from the two-
body solution. If we put this expression for A as
well as the expression for the corresponding D7j(n,)
back into (27), we get a transcendental equation
for E. Before we do this we must mention that
there is one limitation here which is peculiar to
repulsive potentials and in particular to repulsive
potentials in one dimension. That is, one cannot fill
the above preseription for X for all values of . For
we know from the work of Girardeau®’ that in the
limit ¢ — « the three-body problem has ground-
state energy E = 8(r/L)®. Thus as ¢ varies from
zero to infinity, the ground-state energy varies from
zero to this value. For the two-body problem, how-
ever, we know similarly that F varies from zero to
2(w/L)". Thus it is only for such ¢ where the three-
body energy is between zero and 2(x/L)* that we can
find a A for which the two-body problem with
strength {/\ has the same ground-state energy. For
attractive potentials, on the other hand, one can
make the two-body energy vary between zero and
minus infinity and thereby match any three-body
ground-state energy. Also, for three-dimensional
repulsive potentials with radius 7, one can find a
two-body problem with the same ground-state en-
ergy as the three-body one by taking the radius
for the two-body problem to be ro/A, X < 1. Since
the limitation mentioned above does seem peculiar
to the one dimensional repulsive potential problem,
we do not worry further about it, but simply limit
the comparison of our results to those values of ¢
for which our prescription works.

With this, we now return to the evaluation of
Eq. (27). For one-dimensional & functions, we find
from the Appendix that, for the two-body problem,
A and D%(n,) are just (apart from a normalization
factor)

t L
A= 2_1(215') cot (f) " (28)
and
Di(ny) = E-Tz—zm , m, even. (29)

We must then put (28) and (29) into (27), and do
the sum over n,. This can be done directly, or more
simply, we can use the fact that Dj(n,) satisfies the
equation

[E - 2(3')8”7] D) = 7 3 Dimd.

even
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We multiply this by D%(n,) and sum over n, to get
an expression for ), nj[D}(n,)]" in terms of the sim-
pler 2 D%(n,). Putting this into (27), it becomes

(R R) [E Din)]* = 22E[D5(0).  (30)
The sum over n, is
" __L (B)'L
E Din) = =~ 2__—;(2}3) cot o= 23

.vvn

and with D3(0) = 1/E we find that (30) becomes
2+°E’ = tL[3=(E")" cot }=(E")' + 2,
E = 2E'(x/L)*.

Equation (31) is easy enough to solve numerically,
and the results are plotted in Fig. 2 along with the
exact results of Sec IT and the perturbation theory
result £ = 3{L. One sees there that, even when the
potential is fairly strong (by which we mean even
when the perturbation result begins to be off by a
factor of 2), Eq. (31) still gives a fair approximation
to the exact results.

We leave the é-function problem with this. We
could presumably get better numerical results by
truncating Eqs. (26) less severely, but this is not
to the present point, which has been to illustrate the
simplest application of these equations. The agree-
ment we get with the lowest order approximation
is sufficient for the purpose of the moment.

We now consider in the same spirit as for &-
function potentials the truncated equation (27) as
applied to the square well potential: v(z) = v,, |z] <
b/2, v(z) = 0, otherwise. We derive the analog of
Eq. (31), just to see what it looks like. Now, if we
were to use Eq. (27) directly we would have to find
the function D(n,), but, just as above, it is more
convenient to transform this equation into one for
wavefunctions in position space. From the Ap-
pendix, and, in particular, from Eq. (A7) satisfied by
Dy(n,), we see that {E — 2(r/L)* 3 . ni[D(n,)]’}
represents the total energy minus the kinetic energy,
i.e., it represents the expectation value of the po-
tential energy, which we denote by (P.E.). Thus
Eq. (27) can be written

(/N — 1(P.E.) = 2E[D3(0)].

Remembering that this potential energy refers to a
potential of strength v,/, this expectation value is,
in terms of the position wavefunction {(z),

@30

®E) =2 [ | de (32)
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Frg. 2. Ground-state eigenvalue E' as a function of tL for
one-dimensional &-function potentials as given (a)
perturbation theory, (b) approximate solution to lowest
order according to ‘Eq (27), (e) exact numerical solution.
E = 2E'(x/L)%.

with

= Dowen| 22 @y

From this last equation we also have
1 (v
-7 | Y@ dz.

We now put (32) and (33) into (27) to get our final
equation in terms of the two-body wavefunction
¥, an expression for which is given in the Appendix.
With this we get the result, the analog of Eq. (31)
for é-function potentials,

()1\ ) BLA Col (cos® 3aa)L’

cos 3aa sinh 8b |, cosh 38D sin jaa
X ( B8 + @ ) ?

D(0)

o 4 ogh) = — 22

(34)

where

g tanh b = « tan aa (35)

and

a= (B} B8=I[@/MN—E" (36)

Equation (34) defines A in terms of E, v,, a, b so that,
along with Eqs. (35) and (36), it becomes a tran-
scendental equation for E as a function of these
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parameters, which can be solved numerically. We
do not present numerical results here, since our
main point in this paper is to check its general view-
point, and there are no independent results for this
problem with which to compare. In this spirit, how-
ever, it is useful to note that the perturbation theory
result can be derived from these equations. That is,
in the absence of a potential the ground-state three-
body wavefunction is a constant; we expect then
that for v, small the energy eigenvalue I will be just
the expectation value of the total potential for this
wavefunction, and this perturbation encrgy, E,...,
is
... = 3v,b/(a + D).

This result comes directly out of Egs. (34), (33), (36).
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APPENDIX. TWO-BODY WAVEFUNCTIONS

A. General Results
We want to solve the two-body Schrodinger equa-

tion
62
[ _a—.r'f —

with the boundary condition that ¢ be periodic in
z, and z, with period L. As in Sec. I, it is convenient
to deal not with v(xz,,) but with its periodic counter-
part

%: -+ v(rlz)]v’? = Ey (A1)

by(z) = 2 UQ) exp [%] (A2)

Since we work in relative and center-of-mass co-
ordinates z and X,

=2 — 2, X=g+m,

we must first consider the relation between periodie-
ity in these variables and in z; and z,. The general
function periodic in z; and z, is

>~ (function of s,, ;) exp I: (s,zy + Szxz)]

Z (function of s,, s,)

X exp |:‘7L — sz + (s, + s‘,)‘\il

with

8 — 8 = ni, s + 8 = ni.

LEONARD EY
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We see that, as s, and s, independently range over
all integers, n/ and n} also range over the integers,
although not independently, since they are subject
to the condition that both must be even or both be
odd. We conclude then that the general form for a
function periodie in z, and =z, is

> Gty ni) exp [.)L (nix + n'\')]

ny’ . na

n{ and n; both even or both odd,

where C'(n], n) is an arbitrary function, As in Seec. I,
we can conveniently keep track of the even—odd
condition above by using the A(m, n) defined there.
With it we write

¥z, X) = E C(ni, nb) A}, nb)

LIRS P

27, , ; .
X exp [W, (njz + n.,_X):l. (A3)
If then we put (A3) and (A2) into (Al), multiply
by exp [— (i2x/2L)(n,z + n,X)] and integrate from
zero to 2L we get

[ﬁ - 2( ) (i + na)]C(m, na) Alny, n,)

- So(ugyn

We see immediately that the form of the solution
of this equation is

é(nl.v "2) = D(nl) 'SM(n2): (AS)

where D(n,) is for the moment an arbitrary func-
tion and §,,(n,) is just a Kronecker § function, with
m an integer. Given the form (A5), we note that
D(n,) is either of two different types according to
whether m is even or odd. For if m is even the only
allowed value of n, is perforce even, and as a con-
sequence, n, ranges over cven integers. Similarly,
for m odd =, ranges over odd integers. It is con-
venient to label these two types of solution'® ex-
plicitly; we call the first one D" and the second D™,

D*(n.),
D™(n,),

)C(”n ny) A(ni, n,). (A4)

m even,

m odd.

D(n,) — { (A6)

We also define W by
W = E — 2(x/L)*m’.
We first consider m even. We put (A5) into (Ad)

5 These two solutions are equivalent to those derived by
Lieb and Liniger for the same problem from another point of
view. Cf. Ref. 10.
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and add a superseript to D(n,) according to Lq.
(A6). Equation (A4) then becomes

[W ~ 2({-)21&] =3 U("‘ - ) D*(n}),
. n, even. (A7)

Similarly, for m odd we have

[W - 2(1,) ] D™(n,) = Z U( )D (n),
- n, odd. (A8)

Equations (A7) and (AS), derived from a two-
body Schriodinger equation, can be related to the
solution of a one-body equation, namely to the prob-
lem of a single particle, coordinate x, moving in the
periodic potential v,(x). This is obviously a useful
reduction, since there are standard methods for
solving such one-body problems. Consider then the
Schridinger equation for the periodic potential v,(z)
of Eq. (A2). If we call the wavefunction ¢(z), and
choose units properly, it can be written

—2 d'¢p/dz” + v,(zx)p = Wé. (A9)

We know from Bloch’s theorem that ¢(z) can be
written in the form e'*u,(z), where u, is periodic
in z; if we imagine this periodic function expanded

in Fourier series,

$(2) = ™ 3 F() exp ["'22”’],

and write k¥ = 2x«/L then the equation for the
coefficients F(s) is

[w - 2( ) (s + «)* ]F(s)

Now consider Eq. (A7) for D' (n,). Since n, is even
we write n, = 2s, with s integral, and define G*(s)
by

Z Uls — $)F(s).
(A10)

D*(n,) = D*(2s) = G*(s).

Equation (A7) for D*(n,) then becomes, in terms of
G (s)
[w — o%), ]G*(s) = 3 Ul — )G ).

Similarly, for D™ (n,), we let n, = 25 + 1, with s
integral, and define G™(s) by

D™(n) =D (2s 4+ 1) = G (s).

THREE-BODY
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We have then for G (s)

[w = 2( )( +3) JG-(S) = X UG - )6().

Now we observe that these equations for G* and
G~ are identical to Eq. (A10), for x = 0 and x = %,
respectively. The problem of solving these equations
is thereby reduced to a canonical problem of solid
state physies: calculation of the wavefunctions and
energies for a particle in a periodic lattice for the
points x = 0 and « = } in the “Brillouin zone.”

To discuss the orthogonality properties of the
eigenfunctions we have found that we must first put
some additional labels on them. Call D%(n,) and
D7 (n,) the eigenfunctions'® corresponding to the lth
eigenvalue of IEqs. (A7) and (A8), respectively. Then
the function C'(n,, n,) can be similarly labeled and
we define C\,.(n,, n,) by

C(nh n?) = C'lm(nll n!) = Dl(n!) a.(ﬂz) (A].l)

= {Dt(n,) bulng), m =0, £2, %4 -
Di(n,) 6.(ny), m = £1, £3, £5 ---

If we call E,,, the corresponding eigenvalues, we get
Eq. (19) of the text by labeling Eq. (A4),

[E‘,... o 2( ) (ni + ﬂa)]@m(ﬂnm) A(ny, mo)

- S o(ago

We want now to investigate the orthogonality prop-
erties of the ., that is, the properties of the
“orthogonality sum” defined by

2 Gl
From Eq. (All) we see that this sum contains
8,.(ny)8,,: (n,), and therefore vanishes unless m = m'.
But if m = m', D, and D,, must both be of plus
type or both of minus type. Thus the problem of the
orthogonality properties of the sum above reduces
to that for the sums

Z: D'i(n,) Di.(n,)

even

%)t ) Aty ). (A1)

and
2. Di(n) Di.(ny).

But it is easy to show in a standard way directly

16 We let [ range through 0, 1, 2, --- so the lowest eigen-

functions are D¢t and Dy~
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from the equations defining D% and D7 that these
sums are zero'” unless I = I, in which case they can
be made unity by a proper choice of normalization
constant. All this discussion then can be subsumed
by the remark that the €,,, form an orthonormal set
with respect to summations over =, and n.,,

> Cimlny, 0)Crolny, m) = 8100 S (A13)

B. Delta Function and Square Well Potentials

We now specialize the preceding discussion to &
function and square well potentials, for application
of the results to the corresponding three-body prob-
lems of the text.

For the s-function potential, v(z) = t5(z), we have

u) = ¢/L,
and Eq. (A7) becomes

[W - 2(%)2nf:| D*(n) = % "Z: D*(n}), n, even.
(A14)

even

The solution of this equation is immediate. We have,
after adding a superseript to W to show that it is
associated with D",

1\r+

D) = =g

(A15)
where N is a normalization constant. We have only
to determine the allowed values W*. This is simple
enough, for, if we put (A15) back into (A14), we get a
transcendental equation involving W* in terms of
an infinite sum, which sum can be done by the Pois-
son summation formula:

_t 1 o (WL
1=z E W — 2@/ 22w ) % Tovs
even (AIG)
% (x)
+
A
1] o
-+ F B x

Fia. 3. The periodic potential v,(z) for square well repulsive
potentials.

7 We assume that there are no degenerate states.

LEONARD EYGES

Similarly, we have for D~
N-

W= oGy ™ odds

D (n,) =

with the transcendental equation for determining
W
l =

— [t/2(2W7)) tan [(W)IL/2v2).  (AL7)

The normalization factors turn out to be the same
for the plus and minus solutions. Dropping the super-
script on W for the moment, they are

t!!
= L[(#/16W) + (1/2WL) + 3]

W =

Now we turn to two-body square-well potentials,
i.e., we take »(x) to be

v(r) = {va,

0, otherwise.

—1ib <z < 1b,

v,(z), the periodic counterpart of »(x), is then just
the well-known Kronig-Penney potential of solid
state physies. It is sketched in Fig. 3. The functions
D" and D~ can therefore be found as the Fourier
coefficients of the known coordinate space solutions
in this potential. Since for present use in this paper
we do not, however, need D* and D~ but only the
lowest coordinate space solution [corresponding to
« = 0 in Eq. (A10)], we derive it directly here via
the Wigner-Seitz method.'® Referring to Fig. 3, the
symmetric solution (for x = 0) for region I, |z| < b
is

CE™ +e™), B8=[0— M,
and the solution in region II is
Ae-‘u: + Be—n‘uz,

The usual continuity conditions at = 4b and the
periodicity condition that dy/dz be zero at z =
1L = %(a + b) then yield the equations

a = GW)

B - Aeiab’
o= A(eiu'nrb + e;‘a(f.—-ib})
- gt | gde ’

which define the wavefunction (except for nor-
malization); the transcendental equation determin-
ing the energy turns out to be

B tanh 38b = « tan }aa.

18 See almost any text on solid state physies: eg., C.
Kittel, Introductory Solid State Physics, (John Wiley & Sons,
Inc., New York, 1956), 2nd ed.
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